|
--- |
|
tags: |
|
- bertopic |
|
- summcomparer |
|
- document_text |
|
library_name: bertopic |
|
pipeline_tag: text-classification |
|
inference: false |
|
license: apache-2.0 |
|
datasets: |
|
- pszemraj/summcomparer-gauntlet-v0p1 |
|
language: |
|
- en |
|
--- |
|
|
|
# BERTopic-summcomparer-gauntlet-v0p1-sentence-t5-xl-document_text |
|
|
|
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. |
|
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. |
|
|
|
![docs-in-topics](https://i.imgur.com/5SzC0mt.png) |
|
|
|
## Usage |
|
|
|
To use this model, please install BERTopic: |
|
|
|
``` |
|
pip install -U bertopic |
|
``` |
|
|
|
You can use the model as follows: |
|
|
|
```python |
|
from bertopic import BERTopic |
|
topic_model = BERTopic.load("pszemraj/BERTopic-summcomparer-gauntlet-v0p1-sentence-t5-xl-document_text") |
|
|
|
topic_model.get_topic_info() |
|
``` |
|
|
|
## Topic overview |
|
|
|
* Number of topics: 16 |
|
* Number of training documents: 630 |
|
|
|
<details> |
|
<summary>Click here for an overview of all topics.</summary> |
|
|
|
| Topic ID | Topic Keywords | Topic Frequency | Label | |
|
|----------|----------------|-----------------|-------| |
|
| -1 | convolutional - images - networks - superpixels - overfitting | 12 | -1_convolutional_images_networks_superpixels | |
|
| 0 | bruno - guy - pdf - screentalk - he | 26 | 0_bruno_guy_pdf_screentalk | |
|
| 1 | elsa - arendelle - kristoff - frozen - anna | 94 | 1_elsa_arendelle_kristoff_frozen | |
|
| 2 | gillis - script - room - ll - artie | 73 | 2_gillis_script_room_ll | |
|
| 3 | interpretation - explanation - theory - structure - merge | 72 | 3_interpretation_explanation_theory_structure | |
|
| 4 | topics - topic - documents - corpus - document | 63 | 4_topics_topic_documents_corpus | |
|
| 5 | nemo - dory - chum - gill - fish | 56 | 5_nemo_dory_chum_gill | |
|
| 6 | films - film - identity - trauma - zinnemann | 54 | 6_films_film_identity_trauma | |
|
| 7 | computational - data - pathology - medical - informatics | 47 | 7_computational_data_pathology_medical | |
|
| 8 | images - captions - representations - embeddings - image | 26 | 8_images_captions_representations_embeddings | |
|
| 9 | zaroff - rainsford - hunt - hunting - general | 24 | 9_zaroff_rainsford_hunt_hunting | |
|
| 10 | cogvideo - interpolation - videos - coglm - frames | 24 | 10_cogvideo_interpolation_videos_coglm | |
|
| 11 | assignment - essays - questions - projects - students | 17 | 11_assignment_essays_questions_projects | |
|
| 12 | things - ll - some - lol - explain | 16 | 12_things_ll_some_lol | |
|
| 13 | videos - arxiv - visual - preprint - generative | 13 | 13_videos_arxiv_visual_preprint | |
|
| 14 | spectrograms - musecoder - melspectrogram - vocoding - spectrogram | 13 | 14_spectrograms_musecoder_melspectrogram_vocoding | |
|
|
|
</details> |
|
|
|
## Training hyperparameters |
|
|
|
* calculate_probabilities: True |
|
* language: None |
|
* low_memory: False |
|
* min_topic_size: 10 |
|
* n_gram_range: (1, 1) |
|
* nr_topics: None |
|
* seed_topic_list: None |
|
* top_n_words: 10 |
|
* verbose: True |
|
|
|
## Framework versions |
|
|
|
* Numpy: 1.22.4 |
|
* HDBSCAN: 0.8.29 |
|
* UMAP: 0.5.3 |
|
* Pandas: 1.5.3 |
|
* Scikit-Learn: 1.2.2 |
|
* Sentence-transformers: 2.2.2 |
|
* Transformers: 4.29.2 |
|
* Numba: 0.56.4 |
|
* Plotly: 5.13.1 |
|
* Python: 3.10.11 |