|
--- |
|
language: |
|
- en |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
license: apache-2.0 |
|
datasets: |
|
- BEE-spoke-data/fineweb-100k_en-med |
|
--- |
|
|
|
|
|
# MiniLMv2-L6-H384_R-fineweb-100k |
|
|
|
This is a MiniLMv2 model continually pre-trained on an MLM task with the goal of improving downstream fine-tuning/performance: |
|
|
|
- activation updated to SiLU prior to further training |
|
- MLM @ 40% mask ratio |
|
|
|
## Model description |
|
|
|
This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the BEE-spoke-data/fineweb-100k_en-med dataset. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.0206 |
|
- Accuracy: 0.3783 |
|
- Num Input Tokens Seen: 162790400 |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 1792 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07 |
|
- lr_scheduler_type: inverse_sqrt |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 2.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:| |
|
| 4.6583 | 0.1208 | 150 | 4.5052 | 0.3406 | 9830400 | |
|
| 4.5365 | 0.2415 | 300 | 4.3712 | 0.3525 | 19660800 | |
|
| 4.4621 | 0.3623 | 450 | 4.2810 | 0.3575 | 29491200 | |
|
| 4.4116 | 0.4831 | 600 | 4.2466 | 0.3615 | 39321600 | |
|
| 4.3487 | 0.6038 | 750 | 4.1795 | 0.3661 | 49152000 | |
|
| 4.338 | 0.7246 | 900 | 4.1874 | 0.3663 | 58982400 | |
|
| 4.342 | 0.8454 | 1050 | 4.1475 | 0.3695 | 68812800 | |
|
| 4.268 | 0.9661 | 1200 | 4.1215 | 0.3714 | 78643200 | |
|
| 4.2185 | 1.0869 | 1350 | 4.1032 | 0.3725 | 88472576 | |
|
| 4.2645 | 1.2077 | 1500 | 4.0859 | 0.3757 | 98302976 | |
|
| 4.2542 | 1.3284 | 1650 | 4.0730 | 0.3750 | 108133376 | |
|
| 4.2614 | 1.4492 | 1800 | 4.0682 | 0.3749 | 117963776 | |
|
| 4.1928 | 1.5700 | 1950 | 4.0596 | 0.3758 | 127794176 | |
|
| 4.1971 | 1.6907 | 2100 | 4.0505 | 0.3777 | 137624576 | |
|
| 4.1966 | 1.8115 | 2250 | 4.0163 | 0.3787 | 147454976 | |
|
| 4.16 | 1.9323 | 2400 | 4.0352 | 0.3774 | 157285376 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.3.0+cu118 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |