Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
#6
by
autoevaluator
HF staff
- opened
README.md
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
|
|
4 |
tags:
|
5 |
- summarization
|
6 |
- summarisation
|
@@ -9,7 +10,6 @@ tags:
|
|
9 |
- bigbird_pegasus_
|
10 |
- pegasus
|
11 |
- bigbird
|
12 |
-
license: apache-2.0
|
13 |
datasets:
|
14 |
- kmfoda/booksum
|
15 |
metrics:
|
@@ -28,39 +28,38 @@ widget:
|
|
28 |
deviation of the average recurrence interval, the more specific could be the long
|
29 |
term prediction of a future mainshock.
|
30 |
example_title: earthquakes
|
31 |
-
- text:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
\ this function space (Section 5)."
|
64 |
example_title: scientific paper
|
65 |
- text: ' the big variety of data coming from diverse sources is one of the key properties
|
66 |
of the big data phenomenon. It is, therefore, beneficial to understand how data
|
@@ -105,50 +104,62 @@ widget:
|
|
105 |
in their business An important area of data analytics on the edge of corporate
|
106 |
IT and the Internet is Web Analytics.'
|
107 |
example_title: data science textbook
|
108 |
-
- text:
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
example_title: bigbird blog intro
|
153 |
inference:
|
154 |
parameters:
|
@@ -171,30 +182,36 @@ model-index:
|
|
171 |
config: kmfoda--booksum
|
172 |
split: test
|
173 |
metrics:
|
174 |
-
-
|
175 |
-
type: rouge
|
176 |
value: 34.0757
|
|
|
177 |
verified: true
|
178 |
-
|
179 |
-
|
180 |
value: 5.9177
|
|
|
181 |
verified: true
|
182 |
-
|
183 |
-
|
184 |
value: 16.3874
|
|
|
185 |
verified: true
|
186 |
-
|
187 |
-
|
188 |
value: 31.6118
|
|
|
189 |
verified: true
|
190 |
-
|
191 |
-
|
192 |
value: 3.522040605545044
|
|
|
193 |
verified: true
|
194 |
-
|
195 |
-
|
196 |
value: 254.3676
|
|
|
197 |
verified: true
|
|
|
198 |
- task:
|
199 |
type: summarization
|
200 |
name: Summarization
|
@@ -204,30 +221,36 @@ model-index:
|
|
204 |
config: plain_text
|
205 |
split: test
|
206 |
metrics:
|
207 |
-
-
|
208 |
-
type: rouge
|
209 |
value: 40.015
|
|
|
210 |
verified: true
|
211 |
-
|
212 |
-
|
213 |
value: 10.7406
|
|
|
214 |
verified: true
|
215 |
-
|
216 |
-
|
217 |
value: 20.1344
|
|
|
218 |
verified: true
|
219 |
-
|
220 |
-
|
221 |
value: 36.7743
|
|
|
222 |
verified: true
|
223 |
-
|
224 |
-
|
225 |
value: 3.8273396492004395
|
|
|
226 |
verified: true
|
227 |
-
|
228 |
-
|
229 |
value: 228.1285
|
|
|
230 |
verified: true
|
|
|
231 |
---
|
232 |
|
233 |
|
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
4 |
+
license: apache-2.0
|
5 |
tags:
|
6 |
- summarization
|
7 |
- summarisation
|
|
|
10 |
- bigbird_pegasus_
|
11 |
- pegasus
|
12 |
- bigbird
|
|
|
13 |
datasets:
|
14 |
- kmfoda/booksum
|
15 |
metrics:
|
|
|
28 |
deviation of the average recurrence interval, the more specific could be the long
|
29 |
term prediction of a future mainshock.
|
30 |
example_title: earthquakes
|
31 |
+
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates
|
32 |
+
are fed into a neural network that predicts values in the reconstructed domain.
|
33 |
+
Then, this domain is mapped to the sensor domain where sensor measurements are
|
34 |
+
available as supervision. Class and Section Problems Addressed Generalization
|
35 |
+
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid
|
36 |
+
Representations (Section 3) Computation & memory efficiency, representation capacity,
|
37 |
+
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section
|
38 |
+
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section
|
39 |
+
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques
|
40 |
+
in the neural field toolbox each addresses problems that arise in learning, inference,
|
41 |
+
and control. (Section 3). We can supervise reconstruction via differentiable forward
|
42 |
+
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images;
|
43 |
+
Section 4) With appropriate network architecture choices, we can overcome neural
|
44 |
+
network spectral biases (blurriness) and efficiently compute derivatives and integrals
|
45 |
+
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations,
|
46 |
+
and to achieve editable representations (Section 6). Collectively, these classes
|
47 |
+
constitute a ''toolbox'' of techniques to help solve problems with neural fields
|
48 |
+
There are three components in a conditional neural field: (1) An encoder or inference
|
49 |
+
function € that outputs the conditioning latent variable 2 given an observation
|
50 |
+
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS
|
51 |
+
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field
|
52 |
+
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the
|
53 |
+
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes
|
54 |
+
the inverse conditional probability to find the most probable 0 given Z: arg-
|
55 |
+
max P(Olz). We discuss different encoding schemes with different optimality guarantees
|
56 |
+
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different
|
57 |
+
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate
|
58 |
+
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable
|
59 |
+
prior over the sur- face in its reconstruction domain to generalize to the partial
|
60 |
+
observations. A neural network expresses a prior via the function space of its
|
61 |
+
architecture and parameters 0, and generalization is influenced by the inductive
|
62 |
+
bias of this function space (Section 5).'
|
|
|
63 |
example_title: scientific paper
|
64 |
- text: ' the big variety of data coming from diverse sources is one of the key properties
|
65 |
of the big data phenomenon. It is, therefore, beneficial to understand how data
|
|
|
104 |
in their business An important area of data analytics on the edge of corporate
|
105 |
IT and the Internet is Web Analytics.'
|
106 |
example_title: data science textbook
|
107 |
+
- text: 'Transformer-based models have shown to be very useful for many NLP tasks.
|
108 |
+
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time
|
109 |
+
& memory complexity (where nn is sequence length). Hence, it''s computationally
|
110 |
+
very expensive to apply transformer-based models on long sequences n > 512n>512.
|
111 |
+
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention
|
112 |
+
try to remedy this problem by approximating the full attention matrix. You can
|
113 |
+
checkout 🤗''s recent blog post in case you are unfamiliar with these models.
|
114 |
+
|
115 |
+
BigBird (introduced in paper) is one of such recent models to address this issue.
|
116 |
+
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s
|
117 |
+
attention) and can handle sequences up to a length of 4096 at a much lower computational
|
118 |
+
cost compared to BERT. It has achieved SOTA on various tasks involving very long
|
119 |
+
sequences such as long documents summarization, question-answering with long contexts.
|
120 |
+
|
121 |
+
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this
|
122 |
+
post is to give the reader an in-depth understanding of big bird implementation
|
123 |
+
& ease one''s life in using BigBird with 🤗Transformers. But, before going into
|
124 |
+
more depth, it is important to remember that the BigBird''s attention is an approximation
|
125 |
+
of BERT''s full attention and therefore does not strive to be better than BERT''s
|
126 |
+
full attention, but rather to be more efficient. It simply allows to apply transformer-based
|
127 |
+
models to much longer sequences since BERT''s quadratic memory requirement quickly
|
128 |
+
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention
|
129 |
+
would be preferred over block sparse attention (which we are going to discuss
|
130 |
+
in this post).
|
131 |
+
|
132 |
+
If you wonder why we need more compute when working with longer sequences, this
|
133 |
+
blog post is just right for you!
|
134 |
+
|
135 |
+
Some of the main questions one might have when working with standard BERT-like
|
136 |
+
attention include:
|
137 |
+
|
138 |
+
Do all tokens really have to attend to all other tokens? Why not compute attention
|
139 |
+
only over important tokens? How to decide what tokens are important? How to attend
|
140 |
+
to just a few tokens in a very efficient way? In this blog post, we will try to
|
141 |
+
answer those questions.
|
142 |
+
|
143 |
+
What tokens should be attended to? We will give a practical example of how attention
|
144 |
+
works by considering the sentence ''BigBird is now available in HuggingFace for
|
145 |
+
extractive question answering''. In BERT-like attention, every word would simply
|
146 |
+
attend to all other tokens.
|
147 |
+
|
148 |
+
Let''s think about a sensible choice of key tokens that a queried token actually
|
149 |
+
only should attend to by writing some pseudo-code. Will will assume that the token
|
150 |
+
available is queried and build a sensible list of key tokens to attend to.
|
151 |
+
|
152 |
+
>>> # let''s consider following sentence as an example >>> example = [''BigBird'',
|
153 |
+
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'',
|
154 |
+
''question'', ''answering'']
|
155 |
+
|
156 |
+
>>> # further let''s assume, we''re trying to understand the representation of
|
157 |
+
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an
|
158 |
+
empty `set` and fill up the tokens of our interest as we proceed in this section.
|
159 |
+
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything
|
160 |
+
to attend Nearby tokens should be important because, in a sentence (sequence of
|
161 |
+
words), the current word is highly dependent on neighboring past & future tokens.
|
162 |
+
This intuition is the idea behind the concept of sliding attention.'
|
163 |
example_title: bigbird blog intro
|
164 |
inference:
|
165 |
parameters:
|
|
|
182 |
config: kmfoda--booksum
|
183 |
split: test
|
184 |
metrics:
|
185 |
+
- type: rouge
|
|
|
186 |
value: 34.0757
|
187 |
+
name: ROUGE-1
|
188 |
verified: true
|
189 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzk3NmI2ODg0MDM3MzY3ZjMyYzhmNTYyZjBmNTJlM2M3MjZjMzI0YzMxNmRmODhhMzI2MDMzMzMzMmJhMGIyMCIsInZlcnNpb24iOjF9.gM1ClaQdlrDE9q3CGF164WhhlTpg8Ym1cpvN1RARK8FGKDSR37EWmgdg-PSSHgB_l9NuvZ3BgoC7hKxfpcnKCQ
|
190 |
+
- type: rouge
|
191 |
value: 5.9177
|
192 |
+
name: ROUGE-2
|
193 |
verified: true
|
194 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzdmMGU5ODhiMjcxZTJjODk3ZWI3NjY0NWJkMDFjYWI1ZDIyN2YwMDBjODE2ODQzY2I4ZTA1NWI0MTZiZGQwYSIsInZlcnNpb24iOjF9.ZkX-5RfN9cR1y56TUJWFtMRkHRRIzh9bEApa08ClR1ybgHvsnTjhSnNaNSjpXBR4jOVV9075qV38MJpqO8U8Bg
|
195 |
+
- type: rouge
|
196 |
value: 16.3874
|
197 |
+
name: ROUGE-L
|
198 |
verified: true
|
199 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWU4ODExMjEwZjcyOWQ3NGJkYzM4NDgyMGQ2YzM5OThkNWIyMmVhMDNkNjA5OGRkM2UyMDE1MGIxZGVhMjUzZSIsInZlcnNpb24iOjF9.2pDo80GWdIAeyWZ4js7PAf_tJCsRceZTX0MoBINGsdjFBI864C1MkgB1s8aJx5Q47oZMkeFoFoAu0Vs21KF4Cg
|
200 |
+
- type: rouge
|
201 |
value: 31.6118
|
202 |
+
name: ROUGE-LSUM
|
203 |
verified: true
|
204 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjY2ODJiZDg2MzI3N2M5NTU5YzIyZmQ0NzkwM2NlY2U0ZDQ5OTM0NmM5ZmI5NjUxYjA3N2IwYWViOTkxN2MxZCIsInZlcnNpb24iOjF9.9c6Spmci31HdkfXUqKyju1X-Z9HOHSSnZNgC4JDyN6csLaDWkyVwWs5xWvC0mvEnaEnigmkSX1Uy3i355ELmBw
|
205 |
+
- type: loss
|
206 |
value: 3.522040605545044
|
207 |
+
name: loss
|
208 |
verified: true
|
209 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODAyZTFiMjUzYTIzNWI0YjQxOWNlZjdkYjcxNDY3ZjMyNTg3ZDdkOTg3YmEzMjFiYzk2NTM4ZTExZjJiZmI3MCIsInZlcnNpb24iOjF9.n-L_DOkTlkbipJWIQQA-cQqeWJ9Q_b1d2zm7RhLxSpjzXegFxJgkC25hTEhqvanGYZwzahn950ikyyxa4JevAw
|
210 |
+
- type: gen_len
|
211 |
value: 254.3676
|
212 |
+
name: gen_len
|
213 |
verified: true
|
214 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzdlY2U1ZTgwNGUyNGM4ZGJlNDNlY2RjOWViYmFkOWE0ZjMzYTU0ZTg2NTlkN2EyMTYyMjE0NjcwOTU4NzY2NiIsInZlcnNpb24iOjF9.YnwkkcCRnZWbh48BX0fktufQk5pb0qfQvjNrIbARYx7w0PTd-6Fjn6FKwCJ1MOfyeZDI1sd6xckm_Wt8XsReAg
|
215 |
- task:
|
216 |
type: summarization
|
217 |
name: Summarization
|
|
|
221 |
config: plain_text
|
222 |
split: test
|
223 |
metrics:
|
224 |
+
- type: rouge
|
|
|
225 |
value: 40.015
|
226 |
+
name: ROUGE-1
|
227 |
verified: true
|
228 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzE1MGM3ZDYzMDgwZGRlZDRkYmFmZGI4ODg0N2NhMGUyYmU1YmI5Njg0MzMxNzAxZGUxYjc3NTZjYjMwZDhmOCIsInZlcnNpb24iOjF9.7-SojdX5JiNAK31FpAHfkic0S2iziZiYWHCTnb4VTjsDnrDP3xfow1BWsC1N9aNAN_Pi-7FDh_BhDMp89csoCQ
|
229 |
+
- type: rouge
|
230 |
value: 10.7406
|
231 |
+
name: ROUGE-2
|
232 |
verified: true
|
233 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjEwOTRjOTA4N2E0OGQ3OGY0OThjNjlkN2VlZDBlNTI4OGYxNDFiN2YxYTI2YjBjOTJhYWJiNGE1NzcyOWE5YyIsInZlcnNpb24iOjF9.SrMCtxOkMabMELFr5_yqG52zTKGk81oqnqczrovgsko1bGhqpR-83nE7dc8oZ_tmTsbTUF3i7cQ3Eb_8EvPhDg
|
234 |
+
- type: rouge
|
235 |
value: 20.1344
|
236 |
+
name: ROUGE-L
|
237 |
verified: true
|
238 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzkxZmJkYzdmOGI3Yzc1ZDliNGY3ZjE5OWFiYmFmMTU4ZWU2ZDUyNzE0YmY3MmUyMTQyNjkyMTMwYTM2OWU2ZSIsInZlcnNpb24iOjF9.FPX3HynlHurNYlgK1jjocJHZIZ2t8OLFS_qN8skIwbzw1mGb8ST3tVebE9qeXZWY9TbNfWsGERShJH1giw2qDw
|
239 |
+
- type: rouge
|
240 |
value: 36.7743
|
241 |
+
name: ROUGE-LSUM
|
242 |
verified: true
|
243 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjgxNmQ1MmEwY2VlYTAzMTVhMDBlODFjMDNlMjA4NjRiOTNkNjkxZWNiNDg4ODM1NWUwNjk1ODFkMzI3YmM5ZCIsInZlcnNpb24iOjF9.uK7C2bGmOGEWzc8D2Av_WYSqn2epqqiXXq2ybJmoHAT8GYc80jpEGTKjyhjf00lCLw-kOxeSG5Qpr_JihR5kAg
|
244 |
+
- type: loss
|
245 |
value: 3.8273396492004395
|
246 |
+
name: loss
|
247 |
verified: true
|
248 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzI4OTcwOGYzYmM5MmM2NmViNjc4MTkyYzJlYjAwODM4ODRmZTAyZTVmMjJlY2JiYjY0YjA5OWY4NDhjOWQ0ZiIsInZlcnNpb24iOjF9.p46FdAgmW5t3KtP4kBhcoVynTQJj1abV4LqM6MQ-o--c46yMlafmtA4mgMEqsJK_CZl7Iv5SSP_n8GiVMpgmAQ
|
249 |
+
- type: gen_len
|
250 |
value: 228.1285
|
251 |
+
name: gen_len
|
252 |
verified: true
|
253 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODY2OGUzNDlhNzM5NzBiMmNmMDZiNjNkNDI0MDkxMzNkZDE4ZjU4OWM1NGQ5Yjk3ZjgzZjk2MDk0NWI0NGI4YiIsInZlcnNpb24iOjF9.Jb61P9-a31VBbwdOD-8ahNgf5Tpln0vjxd4uQtR7vxGu0Ovfa1T9Y8rKXBApTSigrmqBjRdsLfoAU7LqLiL6Cg
|
254 |
---
|
255 |
|
256 |
|