griffin-llama3t-8L-v0.02-fineweb
Pretraining experiment with griffin/recurrent_gemma arch. This one uses the Llama-3 tokenizer.
Model description
Further training of pszemraj/griffin-1024-llama3t-8layer-simplewiki-silu on the BEE-spoke-data/fineweb-1M_en-med dataset. It achieves the following results on the evaluation set:
- Loss: 5.6538
- Accuracy: 0.1881
- Num Input Tokens Seen: 766509056
evals
tl;dr its bad/would need more training:
hf (pretrained=pszemraj/griffin-llama3t-8L-v0.02-fineweb,trust_remote_code=True,dtype=float), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 4
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
winogrande | 1 | none | 0 | acc | 0.4964 | ± | 0.0141 |
piqa | 1 | none | 0 | acc | 0.5332 | ± | 0.0116 |
none | 0 | acc_norm | 0.5299 | ± | 0.0116 | ||
openbookqa | 1 | none | 0 | acc | 0.1280 | ± | 0.0150 |
none | 0 | acc_norm | 0.2320 | ± | 0.0189 | ||
lambada_openai | 1 | none | 0 | perplexity | 638060.0702 | ± | 43608.0044 |
none | 0 | acc | 0.0000 | ± | 0.0000 | ||
boolq | 2 | none | 0 | acc | 0.3783 | ± | 0.0085 |
arc_easy | 1 | none | 0 | acc | 0.2614 | ± | 0.0090 |
none | 0 | acc_norm | 0.2744 | ± | 0.0092 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 80085
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen |
---|---|---|---|---|---|
6.4019 | 0.0684 | 400 | 6.7690 | 0.1278 | 52428800 |
6.0547 | 0.1368 | 800 | 6.4214 | 0.1460 | 104857600 |
5.8133 | 0.2052 | 1200 | 6.2566 | 0.1550 | 157286400 |
5.7212 | 0.2736 | 1600 | 6.1411 | 0.1620 | 209715200 |
5.6175 | 0.3420 | 2000 | 6.0502 | 0.1669 | 262144000 |
5.5014 | 0.4104 | 2400 | 5.9827 | 0.1687 | 314572800 |
5.4882 | 0.4788 | 2800 | 5.9203 | 0.1731 | 367001600 |
5.3972 | 0.5472 | 3200 | 5.8614 | 0.1782 | 419430400 |
5.3983 | 0.6156 | 3600 | 5.8340 | 0.1773 | 471859200 |
5.3175 | 0.6840 | 4000 | 5.7916 | 0.1814 | 524288000 |
5.3014 | 0.7524 | 4400 | 5.7565 | 0.1814 | 576716800 |
5.2749 | 0.8208 | 4800 | 5.7303 | 0.1849 | 629145600 |
5.2264 | 0.8892 | 5200 | 5.6993 | 0.1850 | 681574400 |
5.2107 | 0.9576 | 5600 | 5.6745 | 0.1884 | 734003200 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 223
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.