GPT2_NonToxic / README.md
pt-sk's picture
Update README.md
9e74c5b verified
metadata
license: mit
datasets: pt-sk/toxic_classification
tags:
  - PPO
  - RLHF
pipeline_tag: text-generation

Aligning the model using Proximal Policy Optimization (PPO). The goal is to train the model to generate non-toxic reviews. The training process utilizes the trl library for reinforcement learning, the transformers library for model handling, and datasets for dataset management. Implementation code is available here: GitHub

# Load model and tokenizer directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("pt-sk/GPT2_NonToxic")
model = AutoModelForCausalLM.from_pretrained("pt-sk/GPT2_NonToxic")

# Example usage
input_text = "The movie was fantastic"
inputs = tokenizer(input_text, return_tensors='pt')
outputs = model.generate(**inputs)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))