Leonard Püttmann
Update README.md
f68d184 verified
|
raw
history blame
2.15 kB
metadata
library_name: transformers
tags:
  - seq2seq
license: apache-2.0
datasets:
  - Helsinki-NLP/europarl
  - Helsinki-NLP/opus-100
language:
  - en
  - it
base_model:
  - bigscience/mt0-small
pipeline_tag: translation
metrics:
  - bleu
   ___                     _         _    __                _   _       
  / _ \   _  _   __ _   __| |  _ _  (_)  / _|  ___   __ _  | | (_)  ___ 
 | (_) | | || | / _` | / _` | | '_| | | |  _| / _ \ / _` | | | | | / _ \
  \__\_\  \_,_| \__,_| \__,_| |_|   |_| |_|   \___/ \__, | |_| |_| \___/
                                                    |___/               

🍀 Quadrifoglio - A small model for English -> Italian translation

Quadrifoglio is an encoder-decoder transformer model for English-Italian text translation based on bigscience/mt0-small. It was trained on the en-it section of Helsinki-NLP/opus-100 and Helsinki-NLP/europarl.

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Load model and tokenizer from checkpoint directory
tokenizer = AutoTokenizer.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it")
model = AutoModelForSeq2SeqLM.from_pretrained("LeonardPuettmann/mt0-Quadrifoglio-mt-en-it")

def generate_response(input_text):
    input_ids = tokenizer("translate English to Italian:" + input_text, return_tensors="pt").input_ids
    output = model.generate(input_ids, max_new_tokens=256)
    return tokenizer.decode(output[0], skip_special_tokens=True)

text_to_translate = "I would like a cup of green tea, please."
response = generate_response(text_to_translate)
print(response)

Evaluation

Done on the Opus 100 test set.

BLEU

Quadrifoglio (this model) mt0-small DeepL
BLEU Score 0.4816 0.0159 0.5210
Precision 1 0.7305 0.2350 0.7613
Precision 2 0.5413 0.0290 0.5853
Precision 3 0.4289 0.0076 0.4800
Precision 4 0.3417 0.0013 0.3971