metadata
tags: autotrain
language: unk
widget:
- text: I love AutoTrain 🤗
datasets:
- pujaburman30/autotrain-data-hi_ner_xlmr_large
co2_eq_emissions: 5.880084418778246
Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 924630372
- CO2 Emissions (in grams): 5.880084418778246
Validation Metrics
- Loss: 0.8206124901771545
- Accuracy: 0.7745009890307498
- Precision: 0.6042857142857143
- Recall: 0.6547987616099071
- F1: 0.6285289747399703
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pujaburman30/autotrain-hi_ner_xlmr_large-924630372
Or Python API:
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("pujaburman30/autotrain-hi_ner_xlmr_large-924630372", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("pujaburman30/autotrain-hi_ner_xlmr_large-924630372", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)