pos-french / README.md
qanastek's picture
Update
9f3970e
|
raw
history blame
9.89 kB
metadata
tags:
  - flair
  - token-classification
  - sequence-tagger-model
language: fr
widget:
  - text: George Washington est allé à Washington

People Involved

  • LABRAK Yanis (1)
  • DUFOUR Richard (2)

Affiliations

  1. LIA, Avignon University, Avignon, France.
  2. LS2N, Nantes University, Nantes, France.

POET: A French Extended Part-of-Speech Tagger

Demo: How to use in Flair

Requires Flair: pip install flair

from flair.data import Sentence
from flair.models import SequenceTagger

# Load the model
model = SequenceTagger.load("qanastek/pos-french")

sentence = Sentence("George Washington est allé à Washington")

# predict tags
model.predict(sentence)

# print predicted pos tags
print(sentence.to_tagged_string())

Output:

Preview Output

Training data

UD_FRENCH_GSD_Plus is a part-of-speech tagging corpora based on UD_French-GSD which was originally created in 2015 and is based on the universal dependency treebank v2.0.

Originally, the corpora consists of 400,399 words (16,341 sentences) and had 17 different classes. Now, after applying our tags augmentation we obtain 60 different classes which add semantic information such as the gender, number, mood, person, tense or verb form given in the different CoNLL-03 fields from the original corpora.

We based our tags on the level of details given by the LIA_TAGG statistical POS tagger written by Frédéric Béchet in 2001.

Original Tags

PRON VERB SCONJ ADP CCONJ DET NOUN ADJ AUX ADV PUNCT PROPN NUM SYM PART X INTJ

New Tags

Abbreviation Description Examples
PREP Preposition de
AUX Auxiliary Verb est
ADV Adverb toujours
COSUB Subordinating conjunction que
COCO Coordinating Conjunction et
PART Demonstrative particle -t
PRON Pronoun qui ce quoi
PDEMMS Singular Masculine Demonstrative Pronoun ce
PDEMMP Plurial Masculine Demonstrative Pronoun ceux
PDEMFS Singular Feminine Demonstrative Pronoun cette
PDEMFP Plurial Feminine Demonstrative Pronoun celles
PINDMS Singular Masculine Indefinite Pronoun tout
PINDMP Plurial Masculine Indefinite Pronoun autres
PINDFS Singular Feminine Indefinite Pronoun chacune
PINDFP Plurial Feminine Indefinite Pronoun certaines
PROPN Proper noun houston
XFAMIL Last name levy
NUM Numerical Adjectives trentaine vingtaine
DINTMS Masculine Numerical Adjectives un
DINTFS Feminine Numerical Adjectives une
PPOBJMS Singular Masculine Pronoun complements of objects le lui
PPOBJMP Plurial Masculine Pronoun complements of objects eux y
PPOBJFS Singular Feminine Pronoun complements of objects moi la
PPOBJFP Plurial Feminine Pronoun complements of objects en y
PPER1S Personal Pronoun First Person Singular je
PPER2S Personal Pronoun Second Person Singular tu
PPER3MS Personal Pronoun Third Person Masculine Singular il
PPER3MP Personal Pronoun Third Person Masculine Plurial ils
PPER3FS Personal Pronoun Third Person Feminine Singular elle
PPER3FP Personal Pronoun Third Person Feminine Plurial elles
PREFS Reflexive Pronouns First Person of Singular me m'
PREF Reflexive Pronouns Third Person of Singular se s'
PREFP Reflexive Pronouns First / Second Person of Plurial nous vous
VERB Verb obtient
VPPMS Singular Masculine Participle Past Verb formulé
VPPMP Plurial Masculine Participle Past Verb classés
VPPFS Singular Feminine Participle Past Verb appelée
VPPFP Plurial Feminine Participle Past Verb sanctionnées
DET Determinant les l'
DETMS Singular Masculine Determinant les
DETFS Singular Feminine Determinant la
ADJ Adjective capable sérieux
ADJMS Singular Masculine Adjective grand important
ADJMP Plurial Masculine Adjective grands petits
ADJFS Singular Feminine Adjective française petite
ADJFP Plurial Feminine Adjective légères petites
NOUN Noun temps
NMS Singular Masculine Noun drapeau
NMP Plurial Masculine Noun journalistes
NFS Singular Feminine Noun tête
NFP Plurial Feminine Noun ondes
PREL Relative Pronoun qui dont
PRELMS Singular Masculine Relative Pronoun lequel
PRELMP Plurial Masculine Relative Pronoun lesquels
PRELFS Singular Feminine Relative Pronoun laquelle
PRELFP Plurial Feminine Relative Pronoun lesquelles
INTJ Interjection merci bref
CHIF Numbers 1979 10
SYM Symbol € %
YPFOR Endpoint .
PUNCT Ponctuation : ,
MOTINC Unknown words Technology Lady
X Typos & others sfeir 3D statu

Evaluation results

Results:
- F-score (micro): 0.952
- F-score (macro): 0.8644
- Accuracy (incl. no class): 0.952

By class:
              precision    recall  f1-score   support
      PPER1S     0.9767    1.0000    0.9882        42
        VERB     0.9823    0.9537    0.9678       583
       COSUB     0.9344    0.8906    0.9120       128
       PUNCT     0.9878    0.9688    0.9782       833
        PREP     0.9767    0.9879    0.9822      1483
      PDEMMS     0.9583    0.9200    0.9388        75
        COCO     0.9839    1.0000    0.9919       245
         DET     0.9679    0.9814    0.9746       645
         NMP     0.9521    0.9115    0.9313       305
       ADJMP     0.8352    0.9268    0.8786        82
        PREL     0.9324    0.9857    0.9583        70
       PREFP     0.9767    0.9545    0.9655        44
         AUX     0.9537    0.9859    0.9695       355
         ADV     0.9440    0.9365    0.9402       504
       VPPMP     0.8667    1.0000    0.9286        26
      DINTMS     0.9919    1.0000    0.9959       122
       ADJMS     0.9020    0.9057    0.9039       244
         NMS     0.9226    0.9336    0.9281       753
         NFS     0.9347    0.9714    0.9527       560
       YPFOR     0.9806    1.0000    0.9902       353
      PINDMS     1.0000    0.9091    0.9524        44
        NOUN     0.8400    0.5385    0.6562        39
       PROPN     0.8605    0.8278    0.8439       395
       DETMS     0.9972    0.9972    0.9972       362
     PPER3MS     0.9341    0.9770    0.9551        87
       VPPMS     0.8994    0.9682    0.9325       157
       DETFS     1.0000    1.0000    1.0000       240
       ADJFS     0.9266    0.9011    0.9136       182
       ADJFP     0.9726    0.9342    0.9530        76
         NFP     0.9463    0.9749    0.9604       199
       VPPFS     0.8000    0.9000    0.8471        40
        CHIF     0.9543    0.9414    0.9478       222
      XFAMIL     0.9346    0.8696    0.9009       115
     PPER3MP     0.9474    0.9000    0.9231        20
     PPOBJMS     0.8800    0.9362    0.9072        47
        PREF     0.8889    0.9231    0.9057        52
     PPOBJMP     1.0000    0.6000    0.7500        10
         SYM     0.9706    0.8684    0.9167        38
      DINTFS     0.9683    1.0000    0.9839        61
      PDEMFS     1.0000    0.8966    0.9455        29
     PPER3FS     1.0000    0.9444    0.9714        18
       VPPFP     0.9500    1.0000    0.9744        19
        PRON     0.9200    0.7419    0.8214        31
     PPOBJFS     0.8333    0.8333    0.8333         6
        PART     0.8000    1.0000    0.8889         4
     PPER3FP     1.0000    1.0000    1.0000         2
      MOTINC     0.3571    0.3333    0.3448        15
      PDEMMP     1.0000    0.6667    0.8000         3
        INTJ     0.4000    0.6667    0.5000         6
       PREFS     1.0000    0.5000    0.6667        10
         ADJ     0.7917    0.8636    0.8261        22
      PINDMP     0.0000    0.0000    0.0000         1
      PINDFS     1.0000    1.0000    1.0000         1
         NUM     1.0000    0.3333    0.5000         3
      PPER2S     1.0000    1.0000    1.0000         2
     PPOBJFP     1.0000    0.5000    0.6667         2
      PDEMFP     1.0000    0.6667    0.8000         3
           X     0.0000    0.0000    0.0000         1
      PRELMS     1.0000    1.0000    1.0000         2
      PINDFP     1.0000    1.0000    1.0000         1

    accuracy                         0.9520     10019
   macro avg     0.8956    0.8521    0.8644     10019
weighted avg     0.9524    0.9520    0.9515     10019

BibTeX Citations

Please cite the following paper when using this model.

UD_French-GSD corpora:

@misc{
    universaldependencies,
    title={UniversalDependencies/UD_French-GSD},
    url={https://github.com/UniversalDependencies/UD_French-GSD}, journal={GitHub},
    author={UniversalDependencies}
}

LIA TAGG:

@techreport{LIA_TAGG,
  author = {Frédéric Béchet},
  title = {LIA_TAGG: a statistical POS tagger + syntactic bracketer},
  institution = {Aix-Marseille University & CNRS},
  year = {2001}
}

Flair Embeddings:

@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}