File size: 13,735 Bytes
1f03d8b
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1584fe8dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1584fe8e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1584fe8ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1584fe8f70>", "_build": "<function ActorCriticPolicy._build at 0x7f1584fe9000>", "forward": "<function ActorCriticPolicy.forward at 0x7f1584fe9090>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1584fe9120>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1584fe91b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1584fe9240>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1584fe92d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1584fe9360>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1584fe93f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1584fde680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687484808634989080, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY5GT02abs+qynRvQKIn76SdlE8llEHvQAAAAAAAAAA5sIgvRR8lLpMdBO0gQ6Urj2yUjrFT5gzAACAPwAAgD9N6iw9YrqYPpbaOj2FoZG+TxETPQxlNj4AAAAAAAAAAM1cuDtG85k/KtPhPIp52b5jDxS9Hs4APQAAAAAAAAAAZrRyPFcpXz4qATE+2ml6vsEa9z2zTdc8AAAAAAAAAAAApIc7tcFzPg30Dz73qDi+l5KPPSrVwT0AAAAAAAAAALOMFj4IrQE/uOV3vbU4v771kh49Q/9bvAAAAAAAAAAAZk5NvAROyD57DdO9to5XvjFESz2plbO9AAAAAAAAAAAzbTY9pEdvu6b+HLzDS5M8u/aevCYwfD0AAIA/AACAP0ZuZD5VuWw+hk0jvgOMp74AH5Q9xvgYvAAAAAAAAAAAzaQIPBu+mj0kjJs9wPBUvsEQvrsfDAm8AAAAAAAAAAAzqTw8rn2NuquNojUijw8wSEZKu5h0tbQAAIA/AACAPzPgurwqihM/ZYVeurdher4b1Ey9Mo7qvQAAAAAAAAAAMxsgO+cArz/aU308/dHWvqE2Qr1mplu9AAAAAAAAAACAnoI9KRw9ul6CL7kPRte0cJ3vu3PfTjgAAIA/AACAP9qsHD5bY7k+5DKWvdOBhL4G5Gg9lmUZvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3st+kP+XKMAWyUTTMBjAF0lEdArdBLdHlOoHV9lChoBkdAbqNPgvUSZmgHS/loCEdArdCCBI4EOnV9lChoBkdAboGAlOXVsmgHTRcBaAhHQK3R/FAmiQF1fZQoaAZHQHGfbIkqto1oB0v2aAhHQK3SQSkCV8l1fZQoaAZHQG/mdqcmShdoB00JAWgIR0Ct0tHDBMzudX2UKGgGR0Bw/5H/cWTHaAdNHwFoCEdArdMdpblijXV9lChoBkdAcg9T6BRQ8GgHTU0BaAhHQK3TbH9WIXV1fZQoaAZHQHChrR4QjD9oB00vAWgIR0Ct1FpOWSlndX2UKGgGR0BmTlNahYeUaAdNZwNoCEdArdU3icXm/3V9lChoBkdAcLUYgJTl1mgHTS4BaAhHQK3VRzdUKiR1fZQoaAZHQHEDWXw9aEBoB0v9aAhHQK3VjQbdadN1fZQoaAZHQHATq9wm3ORoB0vuaAhHQK3VnQ+EAYJ1fZQoaAZHQHE9yyt3fQ9oB00WAWgIR0Ct1bdCVryldX2UKGgGR0BxuWT6i0v5aAdNHgFoCEdArdYNkFwDNnV9lChoBkdAb11NpM6BAmgHTQIBaAhHQK3WJnzQNTd1fZQoaAZHQHFVOYlY2bZoB0v3aAhHQK3WddqtYCB1fZQoaAZHQHB2boGIKtxoB00nAWgIR0Ct1namoBJadX2UKGgGR0BydIjLSuyNaAdNIwFoCEdArdeXWBjFynV9lChoBkdAbRbeNT987mgHTRIBaAhHQK3Y5ha1Tit1fZQoaAZHQGym+5e7cwhoB0v/aAhHQK3Y8f9xZMd1fZQoaAZHQHB5Szw+dLBoB00rAWgIR0Ct2Sb4SHuadX2UKGgGR0Bwo+rksBhhaAdNGAFoCEdArdmZ88cMmXV9lChoBkdAcBivCuU2UGgHTQgBaAhHQK3aMwu/UON1fZQoaAZHQHFXRsqJ/G5oB007AWgIR0Ct2nxMFlkIdX2UKGgGR0Bvb573PAwgaAdL9GgIR0Ct2rCZWq95dX2UKGgGR0By/yDrZ8KHaAdNCQFoCEdArdspreqJdnV9lChoBkdAcJZJ8OTaCmgHTREBaAhHQK3bLSqlxfh1fZQoaAZHQHGn7VjI7vJoB0vqaAhHQK3bO7gbZOB1fZQoaAZHQG4pDIq9XcRoB00VAWgIR0Ct2567mMfjdX2UKGgGR0Bwc79/BnBdaAdNAwFoCEdArdulhNM4+HV9lChoBkdAcNKg62fCh2gHTRQBaAhHQK3br95Qgs91fZQoaAZHQG1i8VxjriVoB0v7aAhHQK3cV24/eLx1fZQoaAZHQG6aE9lmOENoB00GAWgIR0Ct3YJ+lTFVdX2UKGgGR0ByRS/1xsEaaAdNFgFoCEdArd4Bsj3VTnV9lChoBkdAcGVCGvfTC2gHTR4BaAhHQK3fEUpuuRt1fZQoaAZHQG11cujASFpoB008AWgIR0Ct3zMVk+X7dX2UKGgGR0Bw8g8DB/I9aAdNEwFoCEdAreAUwpON53V9lChoBkdAcQMbqyGBWmgHTQcBaAhHQK3g/u4wyqN1fZQoaAZHQHI8JxNqQBBoB01WAWgIR0Ct4ad87ZFodX2UKGgGR0BwnDf0mMOxaAdNCQFoCEdAreHg4VARkHV9lChoBkdAcMtN8E3bVWgHTUQBaAhHQK3h9uKoAGV1fZQoaAZHQHESMSK3uu1oB00XAWgIR0Ct4j4S6DoRdX2UKGgGR0ByZ4RChN/OaAdNKgFoCEdAreK+6NEPUnV9lChoBkdAcJYeUILPU2gHTToBaAhHQK3kwFvAGjd1fZQoaAZHQHBNXGjsUqRoB00IAWgIR0Ct5UOpjtojdX2UKGgGR0BwkRIf8uSPaAdNBAFoCEdArfELakAPu3V9lChoBkdAcdXUXpGFz2gHS+RoCEdArfGijpLVWnV9lChoBkdAcdRPLgXMyWgHTQcBaAhHQK3z4SkCV8l1fZQoaAZHQHCryMxXXAdoB00tAWgIR0Ct8/SvcJt0dX2UKGgGR0BvYbpC8e0YaAdL9WgIR0Ct9EniNsFddX2UKGgGR0ByTzlLeyiVaAdL+mgIR0Ct9TfFJg9edX2UKGgGR0ByhidRR/EwaAdNBQFoCEdArfXUUdq+J3V9lChoBkdAcuDF+NLlFWgHS/poCEdArfXj5ftx/HV9lChoBkdAcXZomG/N7mgHTTUBaAhHQK33RINmUW51fZQoaAZHQHMefk/8l5ZoB000AWgIR0Ct99aDPGADdX2UKGgGR0BT9NthuwX7aAdLz2gIR0Ct+Ae2VmjCdX2UKGgGR0BwFAPmPo3aaAdNCgFoCEdArfhEfigkC3V9lChoBkdAarHlHSWqtGgHTaMCaAhHQK34rU2kzoF1fZQoaAZHQHEZhKQJXyRoB00hAWgIR0Ct+WZ8rqdIdX2UKGgGR0BbZwHiWE9MaAdN6ANoCEdArfmMRpUPx3V9lChoBkdAVVMJx//ecmgHTegDaAhHQK35mH446wN1fZQoaAZHQHM2ID1XeWRoB0vgaAhHQK357YigTRJ1fZQoaAZHQG9Cpo9LYf5oB01SAWgIR0Ct+gWQnx8VdX2UKGgGR0BwQKTdLxqgaAdNDQFoCEdArfqAblzU7XV9lChoBkdAbTAZhrnDBWgHTUUBaAhHQK37dv+fh/B1fZQoaAZHQHCF540Mw11oB00mAWgIR0Ct+5r0Bfa6dX2UKGgGR0ByAMlv60pmaAdNNwFoCEdArfw9vMr3CnV9lChoBkdAb4FBlcyFf2gHTTwBaAhHQK38UYZ2pyZ1fZQoaAZHQG2AUzTF2mpoB00MAWgIR0Ct/FkZrHlwdX2UKGgGR0BwUm/JvHcUaAdNAAFoCEdArfzwJb+tKnV9lChoBkdAcdCFGG21D2gHTRwBaAhHQK39Ox/ustF1fZQoaAZHQHK4JwbVBldoB00nAWgIR0Ct/UK/M4cWdX2UKGgGR0Bwzsdp7CzkaAdNEwFoCEdArf2gwZflZHV9lChoBkdAc77WpZOi4GgHS+1oCEdArf2uqm0mdHV9lChoBkdAcUHprk8zRGgHTRsBaAhHQK3+Sl2vB8B1fZQoaAZHQFD41rIo3JhoB03oA2gIR0Ct/niswL3LdX2UKGgGR0BwpPRb8m8eaAdNIAFoCEdArf6AkJKJ23V9lChoBkdAcn+wmE4//2gHTQcBaAhHQK3+iLP2PDJ1fZQoaAZHQHIw67VawEBoB000AWgIR0Ct/ykn1FpgdX2UKGgGR0ByBB+UhV2iaAdNHgFoCEdArf9jksBhhHV9lChoBkdAbs6mO2iL22gHTQEBaAhHQK3/4hi9Zid1fZQoaAZHQHMWO0ojOcFoB00KAWgIR0Ct/+fx2B8QdX2UKGgGR0BxO9iONo8IaAdL5GgIR0Ct//l2/zredX2UKGgGR0ByqQVBUrCnaAdNDgFoCEdArgCxFZxJd3V9lChoBkdAcCck7OmixmgHTRcBaAhHQK4A0Lqlgtx1fZQoaAZHQHCJ45o4+8poB00CAWgIR0CuAVoicG1QdX2UKGgGR0ByWHQ1JlJ6aAdL7GgIR0CuAWulXRw7dX2UKGgGR0Bx2+dtl7MQaAdNIgFoCEdArgGaQYDT0HV9lChoBkdAcT95Sm65G2gHTR4BaAhHQK4CM1uzhP11fZQoaAZHQHJFdl/YraxoB009AWgIR0CuAl6xHG0edX2UKGgGR8ABdayKNyYHaAdLvWgIR0CuAmXKbKA8dX2UKGgGR0BuY5gAp8WsaAdNNAFoCEdArgNMSCe2/nV9lChoBkdAcDdDn/1g6WgHTTABaAhHQK4Da8p1A7h1fZQoaAZHQHBRlklNUOxoB00yAWgIR0CuA4Xc580DdX2UKGgGR0BywwsOG0u2aAdNCwFoCEdArgOH7rLQonV9lChoBkdAcWlBcRlH0GgHTTkBaAhHQK4DmiyIHkd1fZQoaAZHQHKOKYNRWLhoB0vkaAhHQK4DuH1vl2h1fZQoaAZHQCVym0mdAgRoB0vzaAhHQK4D279ycTd1fZQoaAZHQHC3w0Kqn3toB01CAWgIR0CuBQWP91lodX2UKGgGR0BvM4/7iyY5aAdNCgFoCEdArgUCAlOXV3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}