File size: 17,342 Bytes
d741f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b2c650d30>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b2c650dc0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b2c650e50>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b2c650ee0>",
"_build": "<function ActorCriticPolicy._build at 0x7f9b2c650f70>",
"forward": "<function ActorCriticPolicy.forward at 0x7f9b2c652040>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9b2c6520d0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b2c652160>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f9b2c6521f0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b2c652280>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b2c652310>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b2c6523a0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f9b2c64ee40>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
"dtype": "float32",
"_shape": [
2
],
"low": "[-1. -1.]",
"high": "[1. 1.]",
"bounded_below": "[ True True]",
"bounded_above": "[ True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 100352,
"_total_timesteps": 100000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1670945309866398217,
"learning_rate": 0.001,
"tensorboard_log": "runs/LunarLanderContinuous-v2__trpo__1446053220__1670945307/LunarLanderContinuous-v2",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVtQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAYe7spGLM/D7TGvmKjBb8us5E7hwm0PQAAAAAAAAAAACyRu5EwtT94xOW+hnNSPnJxqDveLtA9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwJLCIaUjAFDlHSUUpQu"
},
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0035199999999999676,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAOMZNPQJQECUhpRSlIwBbJRLfIwBdJRHQDIgRoRIz311fZQoaAZoCWgPQwhBRGraxRpQwJSGlFKUaBVLaGgWR0AyaKP4mCyydX2UKGgGaAloD0MIBmaFIt2PAMCUhpRSlGgVS19oFkdAMyoqkM1CPnV9lChoBmgJaA9DCCwOZ3413U5AlIaUUpRoFUtoaBZHQDN9FOO801t1fZQoaAZoCWgPQwjRWzy8561ewJSGlFKUaBVN6ANoFkdAM8hHLA57xHV9lChoBmgJaA9DCLPTD+oiHUDAlIaUUpRoFUucaBZHQDPeUB4lhPV1fZQoaAZoCWgPQwjL1Y9N8mshwJSGlFKUaBVLb2gWR0Az7bgCOmzjdX2UKGgGaAloD0MIcH1Yb9T6E8CUhpRSlGgVS3FoFkdANALlq8DjinV9lChoBmgJaA9DCEzGMZI9AgxAlIaUUpRoFUt8aBZHQDQV5VwPy091fZQoaAZoCWgPQwg42nHD73Y8QJSGlFKUaBVLfGgWR0A0Kxk/bCaadX2UKGgGaAloD0MIXHaIf9jSHUCUhpRSlGgVS4hoFkdANEIG6f8Mu3V9lChoBmgJaA9DCDeq04GsFzTAlIaUUpRoFUtnaBZHQDRMuTRplBh1fZQoaAZoCWgPQwgzNnSzP8g5QJSGlFKUaBVLimgWR0A0epqREF4cdX2UKGgGaAloD0MI6E6w/zqXJcCUhpRSlGgVS7FoFkdANMxzRx95QnV9lChoBmgJaA9DCNNKIZBLHP2/lIaUUpRoFUuaaBZHQDW03VCojwB1fZQoaAZoCWgPQwjm6zL8p3c1wJSGlFKUaBVN6ANoFkdAN9M8gZCOWHV9lChoBmgJaA9DCOHurN12gT5AlIaUUpRoFUtlaBZHQDgbo8p1A7h1fZQoaAZoCWgPQwhGC9C2mgFUwJSGlFKUaBVN6ANoFkdAOkkuQIUrTnV9lChoBmgJaA9DCAvRIXAkYDdAlIaUUpRoFUuSaBZHQDq0HbAUL2J1fZQoaAZoCWgPQwjkZU0s8HpYwJSGlFKUaBVN6ANoFkdAPJUp/gBLf3V9lChoBmgJaA9DCMTSwI9qSBpAlIaUUpRoFU3oA2gWR0BRppzLfUF0dX2UKGgGaAloD0MIQ3Vz8bc1N8CUhpRSlGgVTegDaBZHQFIciy6cy311fZQoaAZoCWgPQwjltRK6Sw5DwJSGlFKUaBVN6ANoFkdAUq83WFvhqHV9lChoBmgJaA9DCBe86CtIIxdAlIaUUpRoFU3oA2gWR0BTEujM3ZPEdX2UKGgGaAloD0MIbYyd8BJZVcCUhpRSlGgVTegDaBZHQFOzYEnssxx1fZQoaAZoCWgPQwgYP417819MwJSGlFKUaBVN6ANoFkdAVBon1FpfyHV9lChoBmgJaA9DCCs0EMtmHilAlIaUUpRoFU3oA2gWR0BUux7RfF72dX2UKGgGaAloD0MIJnMs76pnAMCUhpRSlGgVTegDaBZHQFU+gQ6IWP91fZQoaAZoCWgPQwg9EFmkiXNOwJSGlFKUaBVN6ANoFkdAVcqlXRw6yXV9lChoBmgJaA9DCBJOC170dQzAlIaUUpRoFU3oA2gWR0BWTX2ZiNKidX2UKGgGaAloD0MIKC1cVmGbI8CUhpRSlGgVTegDaBZHQFb8Ra5f+jx1fZQoaAZoCWgPQwiynITSFyY6wJSGlFKUaBVN6ANoFkdAV2NyCFsYVXV9lChoBmgJaA9DCJuRQe4ikkTAlIaUUpRoFU3oA2gWR0BX5mT9sJpndX2UKGgGaAloD0MIthSQ9j/0QUCUhpRSlGgVTegDaBZHQFhTuqm0mdB1fZQoaAZoCWgPQwgT9Bd6xBBAQJSGlFKUaBVN6ANoFkdAWRkEZBLPEHV9lChoBmgJaA9DCLAEUmLXvj9AlIaUUpRoFU3oA2gWR0BZobXcxj8UdX2UKGgGaAloD0MIy73ArFDUJkCUhpRSlGgVTegDaBZHQFpOnGsFMZh1fZQoaAZoCWgPQwjJ5NTOMJkzQJSGlFKUaBVN6ANoFkdAWph/DtPYWnV9lChoBmgJaA9DCHe7XpoiGkjAlIaUUpRoFU3oA2gWR0BbDY4EOiFkdX2UKGgGaAloD0MIA+0OKQbgPkCUhpRSlGgVTegDaBZHQFutgxrSE151fZQoaAZoCWgPQwjfGW1VEp02QJSGlFKUaBVN6ANoFkdAXCoolUp/gHV9lChoBmgJaA9DCN+nqtBAnB3AlIaUUpRoFU3oA2gWR0BcrDpTuOS4dX2UKGgGaAloD0MIxNDq5AwFB8CUhpRSlGgVTegDaBZHQF0lP5YYBNp1fZQoaAZoCWgPQwiazHhb6WhUQJSGlFKUaBVN6ANoFkdAXaKw9q1w53V9lChoBmgJaA9DCDbmdcQhUVNAlIaUUpRoFU3oA2gWR0BeMoEnssxxdX2UKGgGaAloD0MIAyLElbPBU0CUhpRSlGgVTegDaBZHQF6kmnfl6qt1fZQoaAZoCWgPQwhxk1FlGMcuQJSGlFKUaBVN6ANoFkdAYV9l+Vkc0nV9lChoBmgJaA9DCMx7nGnCnENAlIaUUpRoFU3oA2gWR0BhngQe3hGZdX2UKGgGaAloD0MIiuYBLPI9Q0CUhpRSlGgVTegDaBZHQGHXXI2fkFR1fZQoaAZoCWgPQwjbwB2oU3BEQJSGlFKUaBVN6ANoFkdAYhftqHoHLXV9lChoBmgJaA9DCFn4+lqXSFBAlIaUUpRoFU3oA2gWR0BiVTNMXaakdX2UKGgGaAloD0MIGqTgKeQTU0CUhpRSlGgVTegDaBZHQGKY7KaG5+Z1fZQoaAZoCWgPQwjpYWh1cnxLQJSGlFKUaBVN6ANoFkdAYtMjKPn0TXV9lChoBmgJaA9DCJMYBFYOMVxAlIaUUpRoFU3oA2gWR0BjC6Ww/xDtdX2UKGgGaAloD0MIxRuZR/5oY0CUhpRSlGgVTegDaBZHQGM7GAbyYol1fZQoaAZoCWgPQwgmVdtNcHlhQJSGlFKUaBVN6ANoFkdAY3iCr92ovXV9lChoBmgJaA9DCIFZoUj3MFdAlIaUUpRoFU3oA2gWR0BjtYFvAGjcdX2UKGgGaAloD0MImGvRArTfWkCUhpRSlGgVTegDaBZHQGPq1/DtPYZ1fZQoaAZoCWgPQwjZeoZwTGtkQJSGlFKUaBVN6ANoFkdAZBea/ATIvXV9lChoBmgJaA9DCJSl1vsN8mxAlIaUUpRoFU0VAWgWR0BkPsRaouPFdX2UKGgGaAloD0MI6/6xEB0qX0CUhpRSlGgVTegDaBZHQGRNI3BHkLh1fZQoaAZoCWgPQwg8LxUb89hbQJSGlFKUaBVN6ANoFkdAZKZmfXf643V9lChoBmgJaA9DCJWZ0vpb3l1AlIaUUpRoFU3oA2gWR0BktLTMJQchdX2UKGgGaAloD0MI3UWYolzvXUCUhpRSlGgVTegDaBZHQGURbBO58Sh1fZQoaAZoCWgPQwiEY5Y9CQQ5QJSGlFKUaBVLqmgWR0BlMHEqDsdDdX2UKGgGaAloD0MIwsJJmj/QXUCUhpRSlGgVTegDaBZHQGUxGJvYODt1fZQoaAZoCWgPQwj4a7JGPVNXQJSGlFKUaBVN6ANoFkdAZZLGvOhTO3V9lChoBmgJaA9DCDi6SnfXH1xAlIaUUpRoFU3oA2gWR0Blky9Zid8RdX2UKGgGaAloD0MI3LsGfelRTECUhpRSlGgVS5toFkdAZZl0q6OHWXV9lChoBmgJaA9DCIcZGk8EalxAlIaUUpRoFU3oA2gWR0Bl+dDUmUnpdX2UKGgGaAloD0MIO6dZoN3cVkCUhpRSlGgVTegDaBZHQGYJDLSuyNZ1fZQoaAZoCWgPQwjgS+FBs5xYQJSGlFKUaBVN6ANoFkdAZl6wosqaw3V9lChoBmgJaA9DCAXB49u7QmBAlIaUUpRoFU3oA2gWR0BmaVsLv1DjdX2UKGgGaAloD0MInx1wXTHlXUCUhpRSlGgVTegDaBZHQGehWECeVcF1fZQoaAZoCWgPQwjQ8GYN3t1hQJSGlFKUaBVN6ANoFkdAZ6ybwz+FUXV9lChoBmgJaA9DCLqBAu/kvF1AlIaUUpRoFU3oA2gWR0BoFSzcAR02dX2UKGgGaAloD0MIQ1ciUP24XkCUhpRSlGgVTegDaBZHQGgkPQnhKlJ1fZQoaAZoCWgPQwiunpPet/hgQJSGlFKUaBVN6ANoFkdAaHpoIv8IiXV9lChoBmgJaA9DCHjUmBBz51lAlIaUUpRoFU3oA2gWR0Bog9foicG1dX2UKGgGaAloD0MIuoYZGk/2VkCUhpRSlGgVTegDaBZHQGjHgrQPZqV1fZQoaAZoCWgPQwjxRuaRPxxeQJSGlFKUaBVN6ANoFkdAaOAyC4Bmw3V9lChoBmgJaA9DCDupL0u7LW1AlIaUUpRoFU0WAWgWR0Bo5tVR1oxpdX2UKGgGaAloD0MIGNF2TF09bkCUhpRSlGgVTRsBaBZHQGjv/cvduYR1fZQoaAZoCWgPQwgf2scKfgpiQJSGlFKUaBVN6ANoFkdAaUlLPD50sHV9lChoBmgJaA9DCHbj3ZExZWNAlIaUUpRoFU3oA2gWR0BpUzIgeRxMdX2UKGgGaAloD0MIZB75g4HqX0CUhpRSlGgVTegDaBZHQGmk3LFGXol1fZQoaAZoCWgPQwiaP6a1aZphQJSGlFKUaBVN6ANoFkdAaa9X4CZF5XV9lChoBmgJaA9DCEnW4eiq4mBAlIaUUpRoFU3oA2gWR0BqBpgJC0F9dX2UKGgGaAloD0MIuJOI8K/4YUCUhpRSlGgVTegDaBZHQGoQlMIu5Bl1fZQoaAZoCWgPQwjiOVtAaPdbQJSGlFKUaBVN6ANoFkdAam4x20Re1XV9lChoBmgJaA9DCGSSkbOwsltAlIaUUpRoFU3oA2gWR0Bqewb+98JEdX2UKGgGaAloD0MI6DBfXgBbYUCUhpRSlGgVTegDaBZHQGrULORkmQd1fZQoaAZoCWgPQwjyDBr6JypaQJSGlFKUaBVN6ANoFkdAat4ySFGoaXV9lChoBmgJaA9DCJQw0/Yvi25AlIaUUpRoFU22AWgWR0Bq70JjUd7wdX2UKGgGaAloD0MIOjsZHKVIYkCUhpRSlGgVTegDaBZHQGs3g8bJfY11fZQoaAZoCWgPQwhP6WD9H7VjQJSGlFKUaBVN6ANoFkdAa0tPwd8zAXV9lChoBmgJaA9DCAys4/iholhAlIaUUpRoFU3oA2gWR0Brmjx5LRKIdX2UKGgGaAloD0MIGLX7VYCPYUCUhpRSlGgVTegDaBZHQGuwVHnU2DR1fZQoaAZoCWgPQwjp81FGXADIv5SGlFKUaBVN6ANoFkdAbAmW3z+WGHV9lChoBmgJaA9DCLhWe9iLB2JAlIaUUpRoFU3oA2gWR0BsHrcEeQuFdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 49,
"n_steps": 1024,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.0,
"max_grad_norm": 0.0,
"normalize_advantage": true,
"batch_size": 128,
"cg_max_steps": 15,
"cg_damping": 0.1,
"line_search_shrinking_factor": 0.8,
"line_search_max_iter": 10,
"target_kl": 0.01,
"n_critic_updates": 20,
"sub_sampling_factor": 1
} |