qinweijia's picture
End of training
171c6fe verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
  - matthews_correlation
model-index:
  - name: distilbert-base-uncased-finetuned-cola
    results: []

distilbert-base-uncased-finetuned-cola

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5539
  • Accuracy: 0.8169
  • F1: 0.8741
  • Precision: 0.8329
  • Recall: 0.9196
  • Matthews Correlation: 0.5504

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Matthews Correlation
0.5215 1.0 535 0.4659 0.7747 0.8514 0.7826 0.9334 0.4284
0.3554 2.0 1070 0.4588 0.8073 0.8646 0.8403 0.8904 0.5339
0.2373 3.0 1605 0.5539 0.8169 0.8741 0.8329 0.9196 0.5504
0.1736 4.0 2140 0.7879 0.8111 0.8723 0.8187 0.9334 0.5321
0.1293 5.0 2675 0.8469 0.8102 0.8699 0.8265 0.9182 0.5324

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3