使用方法如下:

from transformers import BertTokenizer, BertForSequenceClassification
import torch

# 加载已训练的模型和分词器
model_path = 'qixun/tangsong_poem_classify'
tokenizer = BertTokenizer.from_pretrained(model_path)
model = BertForSequenceClassification.from_pretrained(model_path)

# 预处理函数
def preprocess_text(text):
    inputs = tokenizer(text, padding='max_length', truncation=True, max_length=128, return_tensors='pt')
    return inputs

# 分类函数
def classify_text(text):
    model.eval()  # 切换到评估模式
    inputs = preprocess_text(text)
    with torch.no_grad():
        outputs = model(**inputs)
    logits = outputs.logits
    probabilities = torch.softmax(logits, dim=1)
    predicted_label = torch.argmax(probabilities, dim=1).item()
    return predicted_label, probabilities

# 示例文本
text = "宵凉百念集孤灯,暗雨鸣廊睡未能。生计坐怜秋一叶,归程冥想浪千层。寒心国事浑难料,堆眼官资信可憎。此去梦中应不忘,顺承门内近觚棱。"

# 调用分类函数
predicted_label, probabilities = classify_text(text)

# 输出结果
print(f"预测标签: {predicted_label}")
print(f"概率分布: {probabilities}")

label_0代表唐诗风格 label_1代表宋诗风格

Downloads last month
15
Safetensors
Model size
96M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.