metadata
base_model: qmeeus/whisper-small-multilingual-spoken-ner-pipeline-step-1
tags:
- generated_from_trainer
datasets:
- facebook/voxpopuli
metrics:
- wer
model-index:
- name: WhisperForSpokenNER
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: facebook/voxpopuli de+es+fr+nl
type: facebook/voxpopuli
config: de+es+fr+nl
split: train
metrics:
- name: Wer
type: wer
value: 0.10856103413576902
WhisperForSpokenNER
This model is a fine-tuned version of /esat/audioslave/qmeeus/exp/whisper_slu/train/whisper-small-spoken-ner on the facebook/voxpopuli de+es+fr+nl dataset. It achieves the following results on the evaluation set:
- Loss: 0.0444
- F1 Score: 0.6098
- Label F1: 0.8369
- Wer: 0.1086
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Label F1 | Wer |
---|---|---|---|---|---|---|
0.0433 | 0.36 | 200 | 0.0523 | 0.6251 | 0.8320 | 0.1043 |
0.0391 | 0.71 | 400 | 0.0504 | 0.6207 | 0.8346 | 0.1047 |
0.0381 | 1.07 | 600 | 0.0496 | 0.6142 | 0.8322 | 0.1065 |
0.0374 | 1.43 | 800 | 0.0484 | 0.6158 | 0.8360 | 0.1071 |
0.0374 | 1.79 | 1000 | 0.0474 | 0.6155 | 0.8370 | 0.1069 |
0.0342 | 2.14 | 1200 | 0.0474 | 0.6118 | 0.8362 | 0.1077 |
0.0362 | 2.5 | 1400 | 0.0468 | 0.6138 | 0.8375 | 0.1079 |
0.0351 | 2.86 | 1600 | 0.0461 | 0.6102 | 0.8361 | 0.1082 |
0.0339 | 3.22 | 1800 | 0.0466 | 0.6111 | 0.8388 | 0.1079 |
0.0323 | 3.57 | 2000 | 0.0467 | 0.6168 | 0.8419 | 0.1088 |
0.0338 | 3.93 | 2200 | 0.0457 | 0.6093 | 0.8426 | 0.1086 |
0.032 | 4.29 | 2400 | 0.0452 | 0.6090 | 0.8398 | 0.1085 |
0.0307 | 4.65 | 2600 | 0.0451 | 0.6139 | 0.8422 | 0.1086 |
0.0321 | 5.0 | 2800 | 0.0452 | 0.6116 | 0.8398 | 0.1083 |
0.0313 | 5.36 | 3000 | 0.0448 | 0.6116 | 0.8404 | 0.1092 |
0.0309 | 5.72 | 3200 | 0.0449 | 0.6109 | 0.8402 | 0.1083 |
0.0305 | 6.08 | 3400 | 0.0448 | 0.6086 | 0.8402 | 0.1083 |
0.0301 | 6.43 | 3600 | 0.0447 | 0.6116 | 0.8375 | 0.1081 |
0.03 | 6.79 | 3800 | 0.0446 | 0.6103 | 0.8401 | 0.1087 |
0.0302 | 7.15 | 4000 | 0.0445 | 0.6120 | 0.8388 | 0.1084 |
0.0294 | 7.51 | 4200 | 0.0442 | 0.6132 | 0.8396 | 0.1086 |
0.03 | 7.86 | 4400 | 0.0444 | 0.6112 | 0.8382 | 0.1088 |
0.03 | 8.22 | 4600 | 0.0445 | 0.6109 | 0.8371 | 0.1087 |
0.0296 | 8.58 | 4800 | 0.0444 | 0.6117 | 0.8378 | 0.1084 |
0.0297 | 8.94 | 5000 | 0.0444 | 0.6098 | 0.8369 | 0.1086 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1