File size: 12,935 Bytes
a372917 dbad223 a372917 c3a1ccc a372917 c083778 c3a1ccc a372917 20d46da a372917 ce7e4cd a372917 8816dc8 a372917 dbad223 a372917 ce7e4cd a372917 8816dc8 a372917 8816dc8 a372917 dbad223 a372917 dbad223 a372917 dbad223 a372917 dbad223 a372917 dbad223 a372917 dbad223 a372917 dbad223 a372917 dbad223 a372917 dbad223 a372917 dbad223 a372917 e980a7c a372917 8816dc8 a372917 dbad223 a372917 dbad223 a372917 ce7e4cd a372917 ce7e4cd a372917 ce7e4cd a372917 69e3747 a372917 dbad223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
---
library_name: pytorch
license: apache-2.0
pipeline_tag: unconditional-image-generation
tags:
- generative_ai
- quantized
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/controlnet_quantized/web-assets/model_demo.png)
# ControlNet: Optimized for Mobile Deployment
## Generating visual arts from text prompt and input guiding image
On-device, high-resolution image synthesis from text and image prompts. ControlNet guides Stable-diffusion with provided input image to generate accurate images from given input prompt.
This model is an implementation of ControlNet found [here](https://github.com/lllyasviel/ControlNet).
This repository provides scripts to run ControlNet on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/controlnet_quantized).
### Model Details
- **Model Type:** Image generation
- **Model Stats:**
- Input: Text prompt and input image as a reference
- Conditioning Input: Canny-Edge
- Text Encoder Number of parameters: 340M
- UNet Number of parameters: 865M
- VAE Decoder Number of parameters: 83M
- ControlNet Number of parameters: 361M
- Model size: 1.4GB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| TextEncoder_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 11.394 ms | 0 - 74 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin) |
| TextEncoder_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 8.08 ms | 0 - 137 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin) |
| TextEncoder_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 10.982 ms | 0 - 1 MB | UINT16 | NPU | Use Export Script |
| UNet_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 262.52 ms | 11 - 17 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/UNet_Quantized.bin) |
| UNet_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 192.789 ms | 3 - 1247 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/UNet_Quantized.bin) |
| UNet_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 260.158 ms | 14 - 15 MB | UINT16 | NPU | Use Export Script |
| VAEDecoder_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 390.243 ms | 0 - 36 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/VAEDecoder_Quantized.bin) |
| VAEDecoder_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 294.404 ms | 0 - 88 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/VAEDecoder_Quantized.bin) |
| VAEDecoder_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 379.548 ms | 0 - 1 MB | UINT16 | NPU | Use Export Script |
| ControlNet_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 100.33 ms | 2 - 68 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin) |
| ControlNet_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 76.94 ms | 0 - 533 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin) |
| ControlNet_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 103.52 ms | 2 - 3 MB | UINT16 | NPU | Use Export Script |
## Installation
This model can be installed as a Python package via pip.
```bash
pip install "qai-hub-models[controlnet_quantized]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo on-device
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.controlnet_quantized.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.controlnet_quantized.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.controlnet_quantized.export
```
```
Profiling Results
------------------------------------------------------------
TextEncoder_Quantized
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 11.4
Estimated peak memory usage (MB): [0, 74]
Total # Ops : 570
Compute Unit(s) : NPU (570 ops)
------------------------------------------------------------
UNet_Quantized
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 262.5
Estimated peak memory usage (MB): [11, 17]
Total # Ops : 5434
Compute Unit(s) : NPU (5434 ops)
------------------------------------------------------------
VAEDecoder_Quantized
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 390.2
Estimated peak memory usage (MB): [0, 36]
Total # Ops : 409
Compute Unit(s) : NPU (409 ops)
------------------------------------------------------------
ControlNet_Quantized
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 100.3
Estimated peak memory usage (MB): [2, 68]
Total # Ops : 2406
Compute Unit(s) : NPU (2406 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/controlnet_quantized/qai_hub_models/models/ControlNet/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Upload compiled model**
Upload compiled models from `qai_hub_models.models.controlnet_quantized` on hub.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.controlnet_quantized import Model
# Load the model
model = Model.from_precompiled()
model_textencoder_quantized = hub.upload_model(model.text_encoder.get_target_model_path())
model_unet_quantized = hub.upload_model(model.unet.get_target_model_path())
model_vaedecoder_quantized = hub.upload_model(model.vae_decoder.get_target_model_path())
model_controlnet_quantized = hub.upload_model(model.controlnet.get_target_model_path())
```
Step 2: **Performance profiling on cloud-hosted device**
After uploading compiled models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
# Device
device = hub.Device("Samsung Galaxy S23")
profile_job_textencoder_quantized = hub.submit_profile_job(
model=model_textencoder_quantized,
device=device,
)
profile_job_unet_quantized = hub.submit_profile_job(
model=model_unet_quantized,
device=device,
)
profile_job_vaedecoder_quantized = hub.submit_profile_job(
model=model_vaedecoder_quantized,
device=device,
)
profile_job_controlnet_quantized = hub.submit_profile_job(
model=model_controlnet_quantized,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data_textencoder_quantized = model.text_encoder.sample_inputs()
inference_job_textencoder_quantized = hub.submit_inference_job(
model=model_textencoder_quantized,
device=device,
inputs=input_data_textencoder_quantized,
)
on_device_output_textencoder_quantized = inference_job_textencoder_quantized.download_output_data()
input_data_unet_quantized = model.unet.sample_inputs()
inference_job_unet_quantized = hub.submit_inference_job(
model=model_unet_quantized,
device=device,
inputs=input_data_unet_quantized,
)
on_device_output_unet_quantized = inference_job_unet_quantized.download_output_data()
input_data_vaedecoder_quantized = model.vae_decoder.sample_inputs()
inference_job_vaedecoder_quantized = hub.submit_inference_job(
model=model_vaedecoder_quantized,
device=device,
inputs=input_data_vaedecoder_quantized,
)
on_device_output_vaedecoder_quantized = inference_job_vaedecoder_quantized.download_output_data()
input_data_controlnet_quantized = model.controlnet.sample_inputs()
inference_job_controlnet_quantized = hub.submit_inference_job(
model=model_controlnet_quantized,
device=device,
inputs=input_data_controlnet_quantized,
)
on_device_output_controlnet_quantized = inference_job_controlnet_quantized.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN ( `.so` / `.bin` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library or `.bin` context binary in an Android application.
## View on Qualcomm® AI Hub
Get more details on ControlNet's performance across various devices [here](https://aihub.qualcomm.com/models/controlnet_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of ControlNet can be found [here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE)
## References
* [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
* [Source Model Implementation](https://github.com/lllyasviel/ControlNet)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
## Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation
|