VIT: Optimized for Mobile Deployment

Imagenet classifier and general purpose backbone

VIT is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of VIT found here.

This repository provides scripts to run VIT on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_classification
  • Model Stats:
    • Model checkpoint: Imagenet
    • Input resolution: 224x224
    • Number of parameters: 86.6M
    • Model size (float): 330 MB
    • Model size (w8a16): 86.2 MB
    • Model size (w8a8): 83.2 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
VIT float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 36.611 ms 0 - 301 MB NPU VIT.tflite
VIT float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 40.223 ms 1 - 302 MB NPU VIT.dlc
VIT float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 12.518 ms 0 - 312 MB NPU VIT.tflite
VIT float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 19.663 ms 0 - 311 MB NPU VIT.dlc
VIT float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 8.131 ms 0 - 14 MB NPU VIT.tflite
VIT float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 11.217 ms 0 - 25 MB NPU VIT.dlc
VIT float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 13.392 ms 1 - 28 MB NPU VIT.onnx.zip
VIT float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 11.378 ms 0 - 300 MB NPU VIT.tflite
VIT float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 14.004 ms 1 - 302 MB NPU VIT.dlc
VIT float SA7255P ADP Qualcomm® SA7255P TFLITE 36.611 ms 0 - 301 MB NPU VIT.tflite
VIT float SA7255P ADP Qualcomm® SA7255P QNN_DLC 40.223 ms 1 - 302 MB NPU VIT.dlc
VIT float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 8.478 ms 0 - 21 MB NPU VIT.tflite
VIT float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 11.205 ms 3 - 29 MB NPU VIT.dlc
VIT float SA8295P ADP Qualcomm® SA8295P TFLITE 14.224 ms 0 - 302 MB NPU VIT.tflite
VIT float SA8295P ADP Qualcomm® SA8295P QNN_DLC 17.09 ms 1 - 307 MB NPU VIT.dlc
VIT float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 8.464 ms 0 - 28 MB NPU VIT.tflite
VIT float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 11.192 ms 0 - 24 MB NPU VIT.dlc
VIT float SA8775P ADP Qualcomm® SA8775P TFLITE 11.378 ms 0 - 300 MB NPU VIT.tflite
VIT float SA8775P ADP Qualcomm® SA8775P QNN_DLC 14.004 ms 1 - 302 MB NPU VIT.dlc
VIT float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 5.981 ms 0 - 308 MB NPU VIT.tflite
VIT float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 7.751 ms 1 - 310 MB NPU VIT.dlc
VIT float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 9.091 ms 0 - 329 MB NPU VIT.onnx.zip
VIT float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 4.129 ms 0 - 305 MB NPU VIT.tflite
VIT float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 5.483 ms 1 - 308 MB NPU VIT.dlc
VIT float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 6.362 ms 1 - 324 MB NPU VIT.onnx.zip
VIT float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 3.647 ms 0 - 302 MB NPU VIT.tflite
VIT float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 4.23 ms 1 - 306 MB NPU VIT.dlc
VIT float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 4.873 ms 1 - 318 MB NPU VIT.onnx.zip
VIT float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 11.848 ms 1127 - 1127 MB NPU VIT.dlc
VIT float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 13.834 ms 171 - 171 MB NPU VIT.onnx.zip
VIT w8a16 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 1146.481 ms 45 - 74 MB CPU VIT.onnx.zip
VIT w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 300.518 ms 36 - 129 MB NPU VIT.onnx.zip
VIT w8a16 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 534.357 ms 86 - 100 MB CPU VIT.onnx.zip
VIT w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 228.39 ms 60 - 96 MB NPU VIT.onnx.zip
VIT w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 342.586 ms 59 - 99 MB NPU VIT.onnx.zip
VIT w8a16 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 592.711 ms 91 - 111 MB CPU VIT.onnx.zip
VIT w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 186.6 ms 60 - 103 MB NPU VIT.onnx.zip
VIT w8a16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 173.175 ms 71 - 71 MB NPU VIT.onnx.zip
VIT w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 TFLITE 71.68 ms 1 - 99 MB NPU VIT.tflite
VIT w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 867.452 ms 66 - 99 MB CPU VIT.onnx.zip
VIT w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 15.57 ms 0 - 48 MB NPU VIT.tflite
VIT w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 7.99 ms 0 - 56 MB NPU VIT.tflite
VIT w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 7.435 ms 0 - 78 MB NPU VIT.tflite
VIT w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 269.228 ms 25 - 115 MB NPU VIT.onnx.zip
VIT w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 7.776 ms 0 - 47 MB NPU VIT.tflite
VIT w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 467.975 ms 62 - 78 MB CPU VIT.onnx.zip
VIT w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 15.57 ms 0 - 48 MB NPU VIT.tflite
VIT w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 7.442 ms 0 - 33 MB NPU VIT.tflite
VIT w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 9.722 ms 0 - 49 MB NPU VIT.tflite
VIT w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 7.475 ms 0 - 19 MB NPU VIT.tflite
VIT w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 7.776 ms 0 - 47 MB NPU VIT.tflite
VIT w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 5.24 ms 0 - 53 MB NPU VIT.tflite
VIT w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 233.46 ms 60 - 98 MB NPU VIT.onnx.zip
VIT w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 4.067 ms 0 - 53 MB NPU VIT.tflite
VIT w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 226.962 ms 60 - 95 MB NPU VIT.onnx.zip
VIT w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 20.662 ms 1 - 32 MB NPU VIT.tflite
VIT w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 463.437 ms 61 - 84 MB CPU VIT.onnx.zip
VIT w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 3.462 ms 0 - 56 MB NPU VIT.tflite
VIT w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 181.858 ms 60 - 95 MB NPU VIT.onnx.zip
VIT w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 151.1 ms 69 - 69 MB NPU VIT.onnx.zip
VIT w8a8_mixed_int16 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 892.433 ms 83 - 124 MB CPU VIT.onnx.zip
VIT w8a8_mixed_int16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 342.28 ms 33 - 139 MB NPU VIT.onnx.zip
VIT w8a8_mixed_int16 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 457.866 ms 85 - 106 MB CPU VIT.onnx.zip
VIT w8a8_mixed_int16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 288.041 ms 79 - 124 MB NPU VIT.onnx.zip
VIT w8a8_mixed_int16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 250.701 ms 79 - 121 MB NPU VIT.onnx.zip
VIT w8a8_mixed_int16 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 489.289 ms 85 - 109 MB CPU VIT.onnx.zip
VIT w8a8_mixed_int16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 238.335 ms 77 - 120 MB NPU VIT.onnx.zip
VIT w8a8_mixed_int16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 237.212 ms 137 - 137 MB NPU VIT.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.vit.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.vit.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.vit.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.vit import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.vit.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.vit.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on VIT's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of VIT can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
353
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support