Yolo-v3: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge

YoloV3 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of Yolo-v3 found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YoloV3 Tiny
    • Input resolution: 416p (416x416)
    • Number of parameters: 8.85M
    • Model size: 24.4 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
Yolo-v3 Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 16.25 ms 0 - 8 MB FP16 NPU --
Yolo-v3 Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 8.663 ms 5 - 7 MB FP16 NPU --
Yolo-v3 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 12.159 ms 6 - 72 MB FP16 NPU --
Yolo-v3 Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 10.704 ms 0 - 95 MB FP16 NPU --
Yolo-v3 Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 6.163 ms 5 - 23 MB FP16 NPU --
Yolo-v3 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 8.425 ms 16 - 45 MB FP16 NPU --
Yolo-v3 Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 8.353 ms 0 - 73 MB FP16 NPU --
Yolo-v3 Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 7.857 ms 5 - 30 MB FP16 NPU --
Yolo-v3 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 11.015 ms 5 - 27 MB FP16 NPU --
Yolo-v3 QCS8275 (Proxy) QCS8275 Proxy TFLITE 107.671 ms 0 - 69 MB FP16 NPU --
Yolo-v3 QCS8275 (Proxy) QCS8275 Proxy QNN 97.988 ms 0 - 10 MB FP16 NPU --
Yolo-v3 QCS8550 (Proxy) QCS8550 Proxy TFLITE 16.78 ms 0 - 12 MB FP16 NPU --
Yolo-v3 QCS8550 (Proxy) QCS8550 Proxy QNN 8.348 ms 5 - 8 MB FP16 NPU --
Yolo-v3 QCS9075 (Proxy) QCS9075 Proxy TFLITE 21.365 ms 0 - 71 MB FP16 NPU --
Yolo-v3 QCS9075 (Proxy) QCS9075 Proxy QNN 11.777 ms 1 - 10 MB FP16 NPU --
Yolo-v3 QCS8450 (Proxy) QCS8450 Proxy TFLITE 18.119 ms 0 - 88 MB FP16 NPU --
Yolo-v3 QCS8450 (Proxy) QCS8450 Proxy QNN 12.984 ms 5 - 29 MB FP16 NPU --
Yolo-v3 Snapdragon X Elite CRD Snapdragon® X Elite QNN 8.534 ms 5 - 5 MB FP16 NPU --
Yolo-v3 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 14.306 ms 5 - 5 MB FP16 NPU --

License

  • The license for the original implementation of Yolo-v3 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support object-detection models for pytorch library.