metadata
library_name: transformers
license: apache-2.0
base_model: timm/resnet18.a1_in1k
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-beans
results: []
vit-base-beans
This model is a fine-tuned version of timm/resnet18.a1_in1k on the beans dataset. It achieves the following results on the evaluation set:
- Loss: 0.7389
- Accuracy: 0.8045
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0863 | 1.0 | 130 | 1.0882 | 0.4286 |
1.063 | 2.0 | 260 | 1.0590 | 0.5414 |
1.0447 | 3.0 | 390 | 1.0229 | 0.6992 |
1.0223 | 4.0 | 520 | 0.9968 | 0.6917 |
1.0 | 5.0 | 650 | 0.9575 | 0.7519 |
0.9726 | 6.0 | 780 | 0.9298 | 0.7744 |
0.9258 | 7.0 | 910 | 0.8871 | 0.8045 |
0.9203 | 8.0 | 1040 | 0.8487 | 0.8346 |
0.9038 | 9.0 | 1170 | 0.8330 | 0.8120 |
0.8112 | 10.0 | 1300 | 0.8084 | 0.8346 |
0.8335 | 11.0 | 1430 | 0.7785 | 0.8346 |
0.8062 | 12.0 | 1560 | 0.7569 | 0.8346 |
0.8141 | 13.0 | 1690 | 0.7536 | 0.8496 |
0.8172 | 14.0 | 1820 | 0.7532 | 0.8271 |
0.7896 | 15.0 | 1950 | 0.7389 | 0.8045 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.4.1+cu118
- Datasets 2.21.0
- Tokenizers 0.20.0