vit-base-beans / README.md
qubvel-hf's picture
qubvel-hf HF staff
End of training
e47c1ba verified
metadata
library_name: transformers
license: apache-2.0
base_model: timm/resnet18.a1_in1k
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-beans
    results: []

vit-base-beans

This model is a fine-tuned version of timm/resnet18.a1_in1k on the beans dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7389
  • Accuracy: 0.8045

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0863 1.0 130 1.0882 0.4286
1.063 2.0 260 1.0590 0.5414
1.0447 3.0 390 1.0229 0.6992
1.0223 4.0 520 0.9968 0.6917
1.0 5.0 650 0.9575 0.7519
0.9726 6.0 780 0.9298 0.7744
0.9258 7.0 910 0.8871 0.8045
0.9203 8.0 1040 0.8487 0.8346
0.9038 9.0 1170 0.8330 0.8120
0.8112 10.0 1300 0.8084 0.8346
0.8335 11.0 1430 0.7785 0.8346
0.8062 12.0 1560 0.7569 0.8346
0.8141 13.0 1690 0.7536 0.8496
0.8172 14.0 1820 0.7532 0.8271
0.7896 15.0 1950 0.7389 0.8045

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.1+cu118
  • Datasets 2.21.0
  • Tokenizers 0.20.0