|
--- |
|
license: apache-2.0 |
|
language: |
|
- zh |
|
- en |
|
pipeline_tag: question-answering |
|
--- |
|
|
|
# Chinese-Alpaca-Plus-13B-GPTQ |
|
|
|
This is GPTQ format quantised 4bit models of [Yiming Cui's Chinese-LLaMA-Alpaca 13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca). |
|
|
|
It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Developed by:** [ymcui (Yiming Cui)](https://github.com/ymcui) |
|
- **Shared by:** Known Rabbit |
|
- **Language(s) (NLP):** Chinese, English |
|
- **License:** Apache 2.0 |
|
- **Finetuned from model:** LLaMA |
|
|
|
The original Github project: [ymcui/Chinese-LLaMA-Alpaca: 中文LLaMA&Alpaca大语言模型+本地CPU/GPU部署 (Chinese LLaMA & Alpaca LLMs)](https://github.com/ymcui/Chinese-LLaMA-Alpaca) |
|
|
|
> In order to promote the open research of large models in the Chinese NLP community, this project open sourced the Chinese LLaMA model and the Alpaca large model with fine-tuned instructions. Based on the original LLaMA, these models expand the Chinese vocabulary and use Chinese data for secondary pre-training, which further improves the basic semantic understanding of Chinese. At the same time, the Chinese Alpaca model further uses Chinese instruction data for fine-tuning, which significantly improves the model's ability to understand and execute instructions. For details, please refer to the technical report (Cui, Yang, and Yao, 2023). |
|
|
|
|
|
|
|
### Model Sources |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** https://github.com/ymcui/Chinese-LLaMA-Alpaca |
|
- **Paper:** [[2304.08177] Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca](https://arxiv.org/abs/2304.08177) |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
#### How to easily download and use this model in text-generation-webui |
|
|
|
Open the text-generation-webui UI as normal. |
|
|
|
1. Click the **Model tab**. |
|
2. Under **Download custom model or LoRA**, enter `rabitt/Chinese-Alpaca-Plus-13B-GPTQ`. |
|
3. Click **Download**. |
|
4. Wait until it says it's finished downloading. |
|
5. Click the **Refresh** icon next to **Model** in the top left. |
|
6. In the **Model drop-down**: choose the model you just downloaded, `Chinese-Alpaca-Plus-13B-GPTQ`. |
|
7. If you see an error like `Error no file named pytorch_model.bin ...` in the bottom right, ignore it - it's temporary. |
|
8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama` |
|
9. Click **Save settings for this model** in the top right. |
|
10. Click **Reload the Model** in the top right. |
|
11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt! |
|
|
|
|
|
|
|
## Training Details |
|
|
|
### Training Procedure |
|
|
|
1. Download models from the following links |
|
|
|
* Original LLaMA: https://github.com/facebookresearch/llama/pull/73 |
|
* Chinese-LLaMA-Plus-13B |
|
|
|
* [ziqingyang/chinese-llama-plus-lora-13b · Hugging Face](https://huggingface.co/ziqingyang/chinese-llama-plus-lora-13b) |
|
* [chinese_llama_plus_lora_13b.zip_免费高速下载|百度网盘-分享无限制](https://pan.baidu.com/s/1VGpNlrLx5zHuNzLOcTG-xw?pwd=8cvd) |
|
* Chinese-Alpaca-Plus-13B |
|
|
|
* [ziqingyang/chinese-alpaca-plus-lora-13b · Hugging Face](https://huggingface.co/ziqingyang/chinese-alpaca-plus-lora-13b) |
|
* [chinese_alpaca_plus_lora_13b.zip_免费高速下载|百度网盘-分享无限制](https://pan.baidu.com/s/1Mew4EjBlejWBBB6_WW6vig?pwd=mf5w) |
|
2. Convert LLaMA to HuggingFace (HF) format with `convert_llama_weights_to_hf.py` |
|
|
|
```bash |
|
wget https://github.com/huggingface/transformers/raw/main/src/transformers/models/llama/convert_llama_weights_to_hf.py |
|
PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python \ |
|
python convert_llama_weights_to_hf.py \ |
|
--input_dir ./llama \ |
|
--model_size 13B \ |
|
--output_dir ./llama-13b-hf |
|
``` |
|
3. Merge `Chinese-LLaMA-Plus-13B` and `Chinese-Alpaca-Plus-13B` into LLaMA with `merge_llama_with_chinese_lora.py` |
|
|
|
```bash |
|
wget https://github.com/ymcui/Chinese-LLaMA-Alpaca/raw/main/scripts/merge_llama_with_chinese_lora.py |
|
python merge_llama_with_chinese_lora.py \ |
|
--base_model ./llama-13b-hf \ |
|
--lora_model ./Chinese-LLaMA-Plus-LoRA-13B,./Chinese-Alpaca-Plus-LoRA-13B \ |
|
--output_type huggingface \ |
|
--output_dir ./Chinese-Alpaca-Plus-13B |
|
``` |
|
4. Quantise the model with `GPTQ-for-LLaMa` |
|
|
|
```bash |
|
mkdir -p Chinese-Alpaca-Plus-13B-GPTQ |
|
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git |
|
cd GPTQ-for-LLaMa |
|
# export CUDA_VISIBLE_DEVICES=0 |
|
python llama.py ../Chinese-Alpaca-Plus-13B c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors ../Chinese-Alpaca-Plus-13B-GPTQ/Chinese-Alpaca-Plus-13B-GPTQ-4bit-128g.safetensors |
|
``` |
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
|
|
```tex |
|
@article{chinese-llama-alpaca, |
|
title={Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca}, |
|
author={Cui, Yiming and Yang, Ziqing and Yao, Xin}, |
|
journal={arXiv preprint arXiv:2304.08177}, |
|
url={https://arxiv.org/abs/2304.08177}, |
|
year={2023} |
|
} |
|
``` |
|
|