racheilla's picture
Training in progress epoch 28
37c9df4
|
raw
history blame
3.02 kB
metadata
license: mit
base_model: cahya/bert-base-indonesian-522M
tags:
  - generated_from_keras_callback
model-index:
  - name: racheilla/bert-base-indonesian-522M-finetuned-pemilu
    results: []

racheilla/bert-base-indonesian-522M-finetuned-pemilu

This model is a fine-tuned version of cahya/bert-base-indonesian-522M on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 3.2853
  • Validation Loss: 3.3995
  • Epoch: 28

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -950, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Epoch
3.2847 3.4266 0
3.3000 3.4116 1
3.2702 3.3975 2
3.2675 3.4689 3
3.2982 3.3540 4
3.3109 3.4127 5
3.2698 3.4126 6
3.2852 3.4165 7
3.2977 3.3816 8
3.2749 3.3923 9
3.2777 3.3841 10
3.2555 3.4534 11
3.2940 3.4194 12
3.2860 3.3810 13
3.2585 3.3328 14
3.2979 3.4310 15
3.2844 3.4374 16
3.2961 3.3630 17
3.2729 3.4132 18
3.2775 3.4114 19
3.2561 3.3869 20
3.3089 3.4583 21
3.2839 3.4010 22
3.2863 3.4335 23
3.2347 3.4040 24
3.2691 3.3805 25
3.2779 3.4005 26
3.3175 3.3627 27
3.2853 3.3995 28

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.15.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0