🕌 Qwen Islamic Expert - Cultural Knowledge Specialist

Model Description

Qwen Islamic Expert is a specialized LoRA (Low-Rank Adaptation) fine-tuned model based on Qwen/Qwen2.5-7B-Instruct, designed to provide accurate and comprehensive knowledge about Islamic culture, history, traditions, and civilization.

This model has been specifically trained to understand and respond to questions about:

  • Islamic Jurisprudence (Fiqh) - Religious rulings and different schools of Islamic law
  • Islamic History - Prophetic biography, Caliphs, Islamic empires and civilizations
  • Islamic Ethics & Social Conduct - Moral principles derived from Islamic teachings
  • Islamic Traditions & Customs - Cultural practices across different Muslim societies
  • Islamic Philosophy & Sciences - Intellectual contributions to world civilization
  • Islamic Arts & Architecture - Cultural expressions, literature, and architectural heritage
  • Islamic Law & Social Systems - Legal frameworks and socio-economic principles

🎯 Performance

Metric Score Comparison
Validation Accuracy 72.3% 🏆 Beats NileChat-3B baseline (69.5%)
Improvement over baseline +2.8% ✅ Significant improvement
Cultural Understanding High ✅ Specialized Islamic knowledge
Multilingual Support Arabic/English ✅ Bilingual capabilities

🚀 Quick Start

Installation

pip install torch transformers peft accelerate bitsandbytes

Basic Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

# Load base model with quantization for memory efficiency
base_model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2.5-7B-Instruct",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    load_in_4bit=True
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")

# Load the Islamic Expert LoRA adapter
model = PeftModel.from_pretrained(
    base_model, 
    "rafiulbiswas/qwen-islamic-expert",
    torch_dtype=torch.bfloat16
)

# Set to evaluation mode
model.eval()

Example Usage

def ask_islamic_question(question, options=None):
    if options:
        # Multiple choice format
        prompt = f'''<|im_start|>system
أنت عالم متخصص في الثقافة الإسلامية والحضارة الإسلامية.<|im_end|>
<|im_start|>user
{question}

A. {options[0]}
B. {options[1]}  
C. {options[2]}
D. {options[3]}

بناءً على معرفتك العميقة بالثقافة الإسلامية، ما هي الإجابة الصحيحة؟<|im_end|>
<|im_start|>assistant
'''
    else:
        # Open-ended question
        prompt = f'''<|im_start|>system
أنت عالم متخصص في الثقافة الإسلامية والحضارة الإسلامية.<|im_end|>
<|im_start|>user
{question}<|im_end|>
<|im_start|>assistant
'''
    
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=150,
            temperature=0.7,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
    
    response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
    return response.strip()

# Example 1: Multiple Choice Question
question = "ما هي أركان الإسلام الخمسة؟"
options = [
    "الصلاة والزكاة والصوم والحج والشهادة",
    "القرآن والسنة والإجماع والقياس والمصلحة", 
    "الإيمان والإسلام والإحسان والقدر والبعث",
    "العدل والحرية والمساواة والشورى والكرامة"
]

answer = ask_islamic_question(question, options)
print(f"الجواب: {answer}")

# Example 2: Open-ended Question  
question = "اشرح مفهوم العدالة في الإسلام"
answer = ask_islamic_question(question)
print(f"الجواب: {answer}")

📊 Training Details

Dataset

  • Primary Dataset: UBC-NLP/palmx_2025_subtask2_islamic
  • Task Type: Multiple-choice question answering
  • Domain: Islamic culture, history, traditions, and civilization
  • Languages: Arabic and English
  • Training Samples: ~750 examples
  • Validation Samples: ~75 examples

Training Configuration

  • Base Model: Qwen/Qwen2.5-7B-Instruct
  • Method: LoRA (Low-Rank Adaptation)
  • LoRA Rank: 32
  • LoRA Alpha: 64
  • LoRA Dropout: 0.05
  • Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, embed_tokens, lm_head
  • Training Epochs: 5
  • Learning Rate: 1e-4
  • Batch Size: 16 (effective, via gradient accumulation)
  • Optimizer: AdamW
  • Scheduler: Cosine with restarts

Training Infrastructure

  • Hardware: GPU with 4-bit quantization (BitsAndBytesConfig)
  • Precision: bfloat16
  • Memory Optimization: Gradient checkpointing, 4-bit quantization
  • Framework: HuggingFace Transformers + PEFT

🎓 Model Capabilities

Strengths

  • Islamic Jurisprudence: Accurate knowledge of Fiqh principles and rulings
  • Historical Knowledge: Comprehensive understanding of Islamic history
  • Cultural Sensitivity: Respectful and accurate cultural representations
  • Multilingual: Responds appropriately in both Arabic and English
  • Contextual Understanding: Grasps nuanced cultural and religious concepts

Example Topics Covered

  • Worship & Rituals: Prayer, fasting, pilgrimage, charity
  • Islamic Law: Halal/Haram, marriage, inheritance, business ethics
  • History: Prophetic era, Rashidun Caliphate, Umayyad, Abbasid periods
  • Philosophy: Islamic philosophy, theology, and intellectual traditions
  • Culture: Art, architecture, literature, music, and social customs
  • Geography: Islamic world, historical centers of learning

⚖️ Ethical Considerations & Limitations

Responsible Use

  • Educational Purpose: Designed for learning about Islamic culture and history
  • Factual Information: Trained on scholarly and authentic sources
  • Cultural Respect: Maintains respectful tone toward Islamic traditions
  • ⚠️ Not Religious Authority: Should not replace consultation with qualified Islamic scholars
  • ⚠️ Academic Context: Best used for educational and research purposes

Limitations

  • Scope: Specialized for Islamic culture; may not perform well on general tasks
  • Training Data: Limited to specific dataset; may not cover all cultural nuances
  • Language: Optimized for Arabic/English; performance in other languages not guaranteed
  • Temporal Knowledge: Training data has cutoff date; recent events may not be covered

📚 Citation & References

If you use this model in your research or applications, please cite:

@misc{qwen-islamic-expert-2024,
  title={Qwen Islamic Expert: A Specialized Cultural Knowledge Model},
  author={Md.Rafiul Biswas, Kais Attia, Shimaa Ibrahim, Mabrouka Bessghaier, Firoj Alam, and Wajdi Zaghouani},
  year={2024},
  howpublished={Hugging Face Model Hub},
  url={https://huggingface.co/rafiulbiswas/qwen-islamic-expert}
}

🔄 Version History

Version 1.0 (Current)

  • Release Date: July 25, 2025
  • Checkpoint: checkpoint-100
  • Performance: 72.3% validation accuracy
  • Features: Initial release with Islamic cultural knowledge specialization

This model is designed to promote understanding and education about Islamic culture and civilization. Please use responsibly and consult qualified scholars for religious guidance.

Downloads last month
11
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rafiulbiswas/qwen-islamic-expert

Base model

Qwen/Qwen2.5-7B
Adapter
(751)
this model

Dataset used to train rafiulbiswas/qwen-islamic-expert