metadata
language:
- bn
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
metrics:
- wer
model-index:
- name: Whisper Tiny Bengali - Raiyan Ahmed
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 16.1
type: mozilla-foundation/common_voice_16_1
config: bn
split: None
args: 'config: it, split: test'
metrics:
- name: Wer
type: wer
value: 49.35147928994083
Whisper Tiny Bengali - Raiyan Ahmed
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1982
- Wer: 49.3515
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5615 | 0.3021 | 200 | 0.5681 | 92.0473 |
0.4104 | 0.6042 | 400 | 0.4525 | 83.0059 |
0.336 | 0.9063 | 600 | 0.3315 | 74.3195 |
0.257 | 1.2085 | 800 | 0.3217 | 75.2095 |
0.2262 | 1.5106 | 1000 | 0.2550 | 65.7941 |
0.1906 | 1.8127 | 1200 | 0.2147 | 59.0769 |
0.1924 | 2.1148 | 1400 | 0.2816 | 67.6071 |
0.1886 | 2.4169 | 1600 | 0.2658 | 68.2982 |
0.175 | 2.7190 | 1800 | 0.2401 | 65.5598 |
0.1268 | 3.0211 | 2000 | 0.2279 | 57.7160 |
0.1206 | 3.3233 | 2200 | 0.2190 | 58.5680 |
0.1085 | 3.6254 | 2400 | 0.2048 | 54.5160 |
0.1049 | 3.9275 | 2600 | 0.1929 | 53.0769 |
0.047 | 4.2296 | 2800 | 0.2100 | 52.4805 |
0.0452 | 4.5317 | 3000 | 0.2054 | 50.8852 |
0.0411 | 4.8338 | 3200 | 0.1982 | 49.3515 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1