File size: 14,575 Bytes
51cd59e
 
440b920
 
51cd59e
 
 
 
b519b19
 
51cd59e
440b920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51cd59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b519b19
51cd59e
 
 
 
b519b19
51cd59e
 
 
 
 
 
 
 
 
 
 
b519b19
51cd59e
 
 
 
 
 
 
 
 
 
 
b519b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51cd59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b519b19
51cd59e
440b920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51cd59e
 
 
 
b519b19
51cd59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b519b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51cd59e
b519b19
 
 
 
 
 
 
 
440b920
b519b19
 
 
440b920
b519b19
 
 
 
440b920
b519b19
 
 
 
440b920
51cd59e
440b920
51cd59e
440b920
 
51cd59e
 
 
 
440b920
 
 
 
51cd59e
 
 
440b920
 
 
51cd59e
440b920
 
 
51cd59e
440b920
51cd59e
440b920
 
 
51cd59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440b920
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
from functools import lru_cache
from typing import Any, Dict, List, Optional, Tuple

import torch
from transformers import PreTrainedTokenizer

DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible."""


# Taken from
# https://github.com/huggingface/transformers/blob/8aca43bdb3cb9a5020f6d57589d85679dc873b1c/src/transformers/models/gpt2/tokenization_gpt2.py#L62-L84
@lru_cache()
def bytes_to_unicode():
    """Returns list of utf-8 byte and a mapping to unicode strings.

    We specifically avoids mapping to whitespace/control characters the bpe code
    barfs on.

    The reversible bpe codes work on unicode strings. This means you need a
    large # of unicode characters in your vocab if you want to avoid UNKs. When
    you're at something like a 10B token dataset you end up needing around 5K
    for decent coverage. This is a significant percentage of your normal, say,
    32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and
    unicode strings.
    """
    bs = (list(range(ord('!'),
                     ord('~') + 1)) + list(range(ord('¡'),
                                                 ord('¬') + 1)) +
          list(range(ord('®'),
                     ord('ÿ') + 1)))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8 + n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))


class TiktokenTokenizerWrapper(PreTrainedTokenizer):
    """A thin wrapper around tiktoken to make it compatible with Hugging Face.

    tokenizers.

    See HuggingFace for further documentation on general tokenizer methods.
    """

    model_input_names = ['input_ids', 'attention_mask']

    def __init__(self,
                 model_name: Optional[str] = None,
                 encoding_name: Optional[str] = None,
                 add_bos_token: bool = False,
                 add_eos_token: bool = False,
                 use_default_system_prompt: bool = False,
                 unk_token: Optional[str] = '<|endoftext|>',
                 eos_token: Optional[str] = '<|endoftext|>',
                 bos_token: Optional[str] = '<|endoftext|>',
                 pad_token: Optional[str] = None,
                 **kwargs: Any):
        """Constructor creates a tiktoken tokenizer to use as the underlying.

        tokenizer.

        Args:
            model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None.
                Either model_name or encoding_name must be set, but not both.
            encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None.
                Either model_name or encoding_name must be set, but not both.
            add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
            add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False.
            use_default_system_prompt (bool, optional): Use the default system prompt or not. Defaults to False.
            unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
            eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
            bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
            pad_token (Optional[str], optional): The pad token. Defaults to None.
        """
        try:
            import tiktoken
        except:
            raise ImportError(
                'You need to install tiktoken to use TiktokenTokenizerWrapper.')

        # Workaround to make tiktokenizer picklable.
        # https://github.com/huggingface/datasets/issues/5536#issuecomment-1682309347
        # There is an open PR from HF to add this to tiktoken: https://github.com/openai/tiktoken/pull/181
        import copyreg
        import functools

        from tiktoken import Encoding  # type: ignore (thirdParty)

        def pickle_Encoding(enc: Encoding):
            return (functools.partial(Encoding,
                                      enc.name,
                                      pat_str=enc._pat_str,
                                      mergeable_ranks=enc._mergeable_ranks,
                                      special_tokens=enc._special_tokens), ())

        copyreg.pickle(Encoding, pickle_Encoding)

        if model_name is not None and encoding_name is not None:
            raise ValueError(
                'You need to specify either model_name or encoding_name, not both.'
            )

        self.model_name = model_name
        self.encoding_name = encoding_name

        if self.model_name is not None:
            self.encoding = tiktoken.encoding_for_model(  # type: ignore (thirdParty)
                self.model_name)
        elif self.encoding_name is not None:
            self.encoding = tiktoken.get_encoding(  # type: ignore (thirdParty)
                self.encoding_name)
        else:
            raise ValueError(
                'You need to specify either model_name or encoding_name.')

        self.add_bos_token = add_bos_token
        self.add_eos_token = add_eos_token
        self.use_default_system_prompt = use_default_system_prompt

        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}

        self.decoder = {}
        for i in range(self.encoding.n_vocab):
            try:
                self.encoding.decode_single_token_bytes(i)
            except KeyError:
                continue
            # Taken from
            # https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
            decoding = ''.join([
                bytes_to_unicode()[ord(char)] for char in
                self.encoding.decode_single_token_bytes(i).decode('latin-1')
            ])
            self.decoder[i] = decoding

        self.encoder = {}
        for i in range(self.encoding.n_vocab):
            if i in self.decoder:
                self.encoder[self.decoder[i]] = i

        super().__init__(model_name=model_name,
                         encoding_name=encoding_name,
                         add_bos_token=add_bos_token,
                         add_eos_token=add_eos_token,
                         use_default_system_prompt=use_default_system_prompt,
                         unk_token=unk_token,
                         eos_token=eos_token,
                         bos_token=bos_token,
                         pad_token=pad_token,
                         **kwargs)

    @property
    def vocab_size(self) -> int:
        """Returns vocab size."""
        return self.encoding.n_vocab

    @property
    def is_fast(self) -> bool:
        return False

    @property
    def default_chat_template(self):
        """Chat ML Template for User/Assistant.

        Pinning default Chat ML template in case defaults change.
        """
        template = (
            "{% set system_message = '' %}"
            '{% if USE_DEFAULT_PROMPT == true %}'
            "{{'<|im_start|>system\n' + 'DEFAULT_SYSTEM_PROMPT'}}"
            '{% endif %}'
            '{% for message in messages %}'
            "{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}"
            '{% endfor %}')
        template = template.replace(
            'USE_DEFAULT_PROMPT',
            'true' if self.use_default_system_prompt else 'false')
        template = template.replace('DEFAULT_SYSTEM_PROMPT',
                                    DEFAULT_SYSTEM_PROMPT)
        return template

    def get_vocab(self) -> Dict[str, int]:
        """Returns vocab as a dict.

        Note: This function does not work properly due to difference in assumptions between tiktoken and Hugging Face tokenizers.
        Most uses do not need to use get_vocab, so this is not a priority to fix.
        """
        # As far as I can tell, we don't require get_vocab to completely work,
        # but when using additional_special_tokens, Hugging Face determines the next
        # token index to add with len(self.get_vocab()) so we need the _size_ of this dictionary to be correct.
        vocab_clone = self.encoder.copy()
        extra_id_index = 0
        candidate_extra_id = f'<extra_id_{extra_id_index}>'
        indices_to_fill_in = {i for i in range(self.vocab_size)} - set(
            vocab_clone.values())

        # Add enough indices to make get_vocab() the right length
        for index_to_add in indices_to_fill_in:
            # Make sure we don't overwrite a token that already exists
            while candidate_extra_id in vocab_clone:
                extra_id_index += 1
                candidate_extra_id = f'<extra_id_{extra_id_index}>'

            # Get an index to add and add the item
            vocab_clone[candidate_extra_id] = index_to_add

        return vocab_clone

    def _tokenize(self, text: str) -> List[str]:
        """Returns a tokenized string."""
        if not isinstance(text, str):
            raise ValueError(
                f'Expected a string input to _tokenize but got {type(text)}.')

        tokens = [
            self.decoder[t]
            for t in self.encoding.encode(text, allowed_special='all')
        ]

        return tokens

    def _convert_token_to_id(self, token: str):
        """Converts a token (str) in an id using the vocab."""
        return self.encoder.get(token, self.encoder.get(self.unk_token))

    def _convert_id_to_token(self, index: int):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.decoder.get(index)

    def convert_tokens_to_string(self, tokens: List[str]):
        """Converts a sequence of tokens (string) in a single string."""
        text = ''.join(tokens)
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8')
        return text

    def build_inputs_with_special_tokens(
            self,
            token_ids_0: List[int],
            token_ids_1: Optional[List[int]] = None) -> List[int]:
        bos_token_id = [self.bos_token_id] if self.add_bos_token else []
        eos_token_id = [self.eos_token_id] if self.add_eos_token else []

        output = bos_token_id + token_ids_0 + eos_token_id

        if token_ids_1 is not None:
            output = output + bos_token_id + token_ids_1 + eos_token_id

        return output

    def get_special_tokens_mask(
            self,
            token_ids_0: List[int],
            token_ids_1: Optional[List[int]] = None,
            already_has_special_tokens: bool = False) -> List[int]:
        """Retrieves sequence ids from a token list that has no special tokens.

        Function copied from
        https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295

        added. This method is called when adding special tokens using the
        tokenizer `prepare_for_model` or `encode_plus` methods.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0,
                token_ids_1=token_ids_1,
                already_has_special_tokens=True)

        bos_token_id = [1] if self.add_bos_token else []
        eos_token_id = [1] if self.add_eos_token else []

        if token_ids_1 is None:
            return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
        return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
                bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)

    def create_token_type_ids_from_sequences(
            self,
            token_ids_0: List[int],
            token_ids_1: Optional[List[int]] = None) -> List[int]:
        sep = [self.sep_token_id]

        if token_ids_1 is None:
            return len(token_ids_0 + sep) * [0]
        return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

    def save_vocabulary(self,
                        save_directory: str,
                        filename_prefix: Optional[str] = None) -> Tuple[str]:

        # ignore the below type to keep the original signature
        # we are knowingly breaking the signature here, although not 100% certain
        # it doesn't have side effects
        # There is some code in huggingface that calls this function to get the vocab files,
        # but it doesn't seem to access them (or at least checks for their existence
        # before accessing them)
        return (None, None)  # type: ignore

    def sanitize_special_tokens(self) -> int:
        """Make sure that all the special tokens attributes of the tokenizer.

        (`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the
        vocabulary.

        Add the missing ones to the vocabulary if needed.

        Return:
            `int`: The number of tokens added in the vocabulary during the operation.
        """
        actual_new_tokens = []
        for token in self.all_special_tokens_extended:
            encoded = self.encoding.encode(token, allowed_special='all')
            if len(encoded) > 1:
                actual_new_tokens.append(token)

        return self.add_tokens(actual_new_tokens, special_tokens=True)

    def construct_logit_tensor(self, logprobs: Dict[str,
                                                    float]) -> torch.Tensor:
        """Construct tensor of shape (vocab_size,) mapping words to logprobs.

        Args:
            logprobs (Dict[str, float]): Dictionary mapping tokens to log probabilities assigned to them by the model.
        """
        tensor = torch.tensor([min(logprobs.values()) - 1] * (self.vocab_size))
        for k in logprobs:
            encoding = self(k)['input_ids']
            idx = encoding[0]
            tensor[idx] = logprobs[k]
        return tensor


TiktokenTokenizerWrapper.register_for_auto_class()