STS-Lora-Fine-Tuning-Capstone-roberta-base-deepset-filtered-120-with-higher-r-mid

This model is a fine-tuned version of deepset/roberta-base-squad2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7040
  • Accuracy: 0.6854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 57 1.0545 0.4551
No log 2.0 114 1.0270 0.5
No log 3.0 171 0.9823 0.5262
No log 4.0 228 0.9416 0.5356
No log 5.0 285 0.8917 0.5805
No log 6.0 342 0.7931 0.6180
No log 7.0 399 0.7627 0.6423
No log 8.0 456 0.7679 0.6573
0.7963 9.0 513 0.7380 0.6610
0.7963 10.0 570 0.7256 0.6760
0.7963 11.0 627 0.7223 0.6742
0.7963 12.0 684 0.7255 0.6779
0.7963 13.0 741 0.7132 0.6779
0.7963 14.0 798 0.7097 0.6835
0.7963 15.0 855 0.7116 0.6760
0.7963 16.0 912 0.7200 0.6760
0.7963 17.0 969 0.7176 0.6760
0.615 18.0 1026 0.7133 0.6798
0.615 19.0 1083 0.7121 0.6798
0.615 20.0 1140 0.7117 0.6873
0.615 21.0 1197 0.7028 0.6816
0.615 22.0 1254 0.7033 0.6854
0.615 23.0 1311 0.7054 0.6798
0.615 24.0 1368 0.7059 0.6854
0.615 25.0 1425 0.6996 0.6835
0.615 26.0 1482 0.7045 0.6835
0.5826 27.0 1539 0.7032 0.6854
0.5826 28.0 1596 0.7030 0.6854
0.5826 29.0 1653 0.7046 0.6854
0.5826 30.0 1710 0.7040 0.6854

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for rajevan123/STS-Lora-Fine-Tuning-Capstone-roberta-base-deepset-filtered-120-with-higher-r-mid

Adapter
(3)
this model