Edit model card

layoutlmv3-finetuned-cord_200

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4529
  • Precision: 0.9034
  • Recall: 0.9169
  • F1: 0.9101
  • Accuracy: 0.9121

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 6.25 250 1.0785 0.6815 0.7575 0.7175 0.7780
1.3902 12.5 500 0.5871 0.8542 0.8683 0.8612 0.8604
1.3902 18.75 750 0.4572 0.8728 0.8937 0.8831 0.8905
0.298 25.0 1000 0.3947 0.8936 0.9117 0.9026 0.9092
0.298 31.25 1250 0.3925 0.8982 0.9177 0.9078 0.9117
0.1023 37.5 1500 0.4290 0.8908 0.9102 0.9004 0.9041
0.1023 43.75 1750 0.4220 0.8980 0.9162 0.9070 0.9117
0.0475 50.0 2000 0.4755 0.8944 0.9064 0.9004 0.8990
0.0475 56.25 2250 0.4635 0.8992 0.9147 0.9069 0.9070
0.0296 62.5 2500 0.4475 0.9019 0.9154 0.9086 0.9117
0.0296 68.75 2750 0.4484 0.9004 0.9139 0.9071 0.9079
0.0242 75.0 3000 0.4529 0.9034 0.9169 0.9101 0.9121

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results