ner_nerd / README.md
ramybaly's picture
add model
dc61a5f
|
raw
history blame
2.12 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - nerd
metrics:
  - precision
  - recall
  - f1
  - accuracy
model_index:
  - name: ner_nerd
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: nerd
          type: nerd
          args: nerd
        metric:
          name: Accuracy
          type: accuracy
          value: 0.9389165843185125

ner_nerd

This model is a fine-tuned version of bert-base-uncased on the nerd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2553
  • Precision: 0.7495
  • Recall: 0.7859
  • F1: 0.7672
  • Accuracy: 0.9389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2805 1.0 8235 0.1950 0.7355 0.7835 0.7587 0.9376
0.165 2.0 16470 0.1919 0.7528 0.7826 0.7674 0.9400
0.1214 3.0 24705 0.2124 0.7522 0.7859 0.7687 0.9395
0.0879 4.0 32940 0.2259 0.7483 0.7879 0.7675 0.9391
0.0652 5.0 41175 0.2550 0.7522 0.7874 0.7694 0.9390

Framework versions

  • Transformers 4.9.1
  • Pytorch 1.9.0+cu102
  • Datasets 1.11.0
  • Tokenizers 0.10.2