gpad-v1-entropy-taskA-sample
This model is a fine-tuned version of microsoft/codebert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5335
 - Accuracy: 0.805
 - F1 Macro: 0.0
 - F1 Weighted: 0.7180
 - Precision Macro: 0.0
 - Recall Macro: 0.0
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 16
 - eval_batch_size: 16
 - seed: 42
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 500
 - num_epochs: 3
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro | 
|---|---|---|---|---|---|---|---|---|
| No log | 1.0 | 13 | 0.6164 | 0.805 | 0.0488 | 0.7271 | 0.5 | 0.0256 | 
| No log | 2.0 | 26 | 0.5781 | 0.805 | 0.0 | 0.7180 | 0.0 | 0.0 | 
| No log | 3.0 | 39 | 0.5335 | 0.805 | 0.0 | 0.7180 | 0.0 | 0.0 | 
Framework versions
- Transformers 4.53.3
 - Pytorch 2.6.0+cu124
 - Datasets 4.0.0
 - Tokenizers 0.21.2
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support
Model tree for ranjan56cse/gpad-v1-entropy-taskA-sample
Base model
microsoft/codebert-base