File size: 4,676 Bytes
ab63a30
b8e4445
 
ab63a30
e8158a7
 
 
 
 
 
 
9ef0653
 
 
 
 
 
8129d29
9ef0653
ab63a30
 
e8158a7
ab63a30
b1a3492
e8158a7
1dac90a
 
ab63a30
1dac90a
c7218c7
 
 
 
 
 
 
 
 
1dac90a
 
c7218c7
 
1dac90a
 
 
 
 
 
c7218c7
 
1dac90a
 
 
 
 
 
 
 
c7218c7
 
b955352
c7218c7
801546d
c7218c7
801546d
b955352
7e08a27
801546d
b955352
7e08a27
801546d
b955352
7e08a27
c7218c7
b955352
 
c7218c7
b955352
 
 
 
 
 
 
 
17f2a60
b955352
17f2a60
b955352
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
language:
- am
library_name: transformers
datasets:
- oscar
- mc4
metrics:
- perplexity
pipeline_tag: fill-mask
widget:
- text: ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል።
  example_title: Example 1
- text: ባለፉት አምስት ዓመታት የአውሮጳ ሀገራት የጦር [MASK] ግዢ በእጅጉ ጨምሯል።
  example_title: Example 2
- text: ኬንያውያን ከዳር እስከዳር በአንድ ቆመው የተቃውሞ ድምጻቸውን ማሰማታቸውን ተከትሎ የዜጎችን ቁጣ የቀሰቀሰው የቀረጥ ጭማሪ ሕግ ትናንት በፕሬዝደንት ዊልያም ሩቶ [MASK] ቢደረግም ዛሬም ግን የተቃውሞው እንቅስቃሴ መቀጠሉ እየተነገረ ነው።
  example_title: Example 3
- text: ተማሪዎቹ በውድድሩ ካሸነፉበት የፈጠራ ስራ መካከል [MASK] እና ቅዝቃዜን እንደአየር ሁኔታው የሚያስተካክል ጃኬት አንዱ ነው።
  example_title: Example 4
---

# bert-mini-amharic

This model has the same architecture as [bert-mini](https://huggingface.co/prajjwal1/bert-mini) and was pretrained from scratch using the Amharic subsets of the [oscar](https://huggingface.co/datasets/oscar) and [mc4](https://huggingface.co/datasets/mc4) datasets, on a total of `137 Million` tokens. The tokenizer was trained from scratch on the same text corpus, and had a vocabulary size of 24k.
It achieves the following results on the evaluation set:
- `Loss: 3.11`
- `Perplexity: 22.42`

Even though this model only has `10.7 Million` parameters, its performance is only slightly behind the 26x larger `279 Million` parameter [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) model on the same Amharic evaluation set.

# How to use
You can use this model directly with a pipeline for masked language modeling:

```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='rasyosef/bert-mini-amharic')
>>> unmasker("ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል።")

[{'score': 0.6525624394416809,
  'token': 9617,
  'token_str': 'ዓመታት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታት ተቆጥሯል ።'},
 {'score': 0.22671808302402496,
  'token': 9345,
  'token_str': 'ዓመት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመት ተቆጥሯል ።'},
 {'score': 0.07071439921855927,
  'token': 10898,
  'token_str': 'አመታት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመታት ተቆጥሯል ።'},
 {'score': 0.02838180586695671,
  'token': 9913,
  'token_str': 'አመት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመት ተቆጥሯል ።'},
 {'score': 0.006343209184706211,
  'token': 22459,
  'token_str': 'ዓመታትን',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታትን ተቆጥሯል ።'}]
```

# Finetuning

This model was finetuned and evaluated on the following Amharic NLP tasks

- **Sentiment Classification**
  - Dataset: [amharic-sentiment](https://huggingface.co/datasets/rasyosef/amharic-sentiment)
  - Code: https://github.com/rasyosef/amharic-sentiment-classification
- **Named Entity Recognition**
  - Dataset: [amharic-named-entity-recognition](https://huggingface.co/datasets/rasyosef/amharic-named-entity-recognition)
  - Code: https://github.com/rasyosef/amharic-named-entity-recognition
- **News Category Classification**
  - Dataset: [amharic-news-category-classification](https://github.com/rasyosef/amharic-news-category-classification)
  - Code: https://github.com/rasyosef/amharic-news-category-classification

### Finetuned Model Performance
The reported F1 scores are macro averages.

|Model|Size (# params)| Perplexity|Sentiment (F1)| Named Entity Recognition (F1)|
|-----|---------------|-----------|--------------|------------------------------|
|bert-medium-amharic|40.5M|13.74|0.83|0.68|
|bert-small-amharic|27.8M|15.96|0.83|0.68|
|**bert-mini-amharic**|**10.7M**|**22.42**|**0.81**|**0.64**|
|bert-tiny-amharic|4.18M|71.52|0.79|0.54|
|xlm-roberta-base|279M||0.83|0.73|
|am-roberta|443M||0.82|0.69|

### Amharic News Category Classification

|Model|Size(# params)|Accuracy|Precision|Recall|F1|
|-----|--------------|--------|---------|------|--|
|bert-small-amharic|25.7M|0.89|0.86|0.87|0.86|
|**bert-mini-amharic**|9.67M|0.87|0.83|0.83|0.83|
|xlm-roberta-base|279M|0.9|0.88|0.88|0.88|