File size: 4,758 Bytes
b7d1354
16cdbc2
 
b7d1354
5d2dd32
 
 
c60942b
5d2dd32
 
 
 
16cdbc2
 
 
 
a799df0
 
b4480f0
a799df0
b7d1354
 
d359b23
b7d1354
c60942b
5d2dd32
c60942b
 
b7d1354
c60942b
4b0534d
 
 
 
 
 
 
 
 
c60942b
 
4b0534d
 
c60942b
 
4b0534d
 
c60942b
 
 
 
 
 
4b0534d
 
c60942b
 
 
 
4b0534d
 
4298ca1
4b0534d
f902034
4b0534d
6a075e4
4298ca1
aa46b87
6a075e4
4298ca1
aa46b87
6a075e4
4298ca1
aa46b87
4298ca1
 
 
 
 
 
 
 
 
 
 
 
57dc01c
 
 
4358c71
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
- am
library_name: transformers
datasets:
- oscar
- mc4
- rasyosef/amharic-sentences-corpus
metrics:
- perplexity
pipeline_tag: fill-mask
widget:
- text: ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል።
  example_title: Example 1
- text: ባለፉት አምስት ዓመታት የአውሮጳ ሀገራት የጦር [MASK] ግዢ በእጅጉ ጨምሯል።
  example_title: Example 2
- text: ኬንያውያን ከዳር እስከዳር በአንድ ቆመው የተቃውሞ ድምጻቸውን ማሰማታቸውን ተከትሎ የዜጎችን ቁጣ የቀሰቀሰው የቀረጥ ጭማሪ ሕግ ትናንት በፕሬዝደንት ዊልያም ሩቶ [MASK] ቢደረግም ዛሬም ግን የተቃውሞው እንቅስቃሴ መቀጠሉ እየተነገረ ነው።
  example_title: Example 3
- text: ተማሪዎቹ በውድድሩ ካሸነፉበት የፈጠራ ስራ መካከል [MASK] እና ቅዝቃዜን እንደአየር ሁኔታው የሚያስተካክል ጃኬት አንዱ ነው።
  example_title: Example 4
---

# bert-small-amharic

This model has the same architecture as [bert-small](https://huggingface.co/prajjwal1/bert-small) and was pretrained from scratch using the Amharic subsets of the [oscar](https://huggingface.co/datasets/oscar), [mc4](https://huggingface.co/datasets/mc4), and [amharic-sentences-corpus](https://huggingface.co/datasets/rasyosef/amharic-sentences-corpus) datasets, on a total of `290 Million` tokens. The tokenizer was trained from scratch on the same text corpus, and had a vocabulary size of 28k.
It achieves the following results on the evaluation set:
- `Loss: 2.77`
- `Perplexity: 15.96`

Even though this model only has `27.8 Million` parameters, its performance is comparable to the 10x larger `279 Million` parameter [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) multilingual model on the same Amharic evaluation set.

# How to use
You can use this model directly with a pipeline for masked language modeling:

```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='rasyosef/bert-small-amharic')
>>> unmasker("ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል።")

[{'score': 0.5164287686347961,
  'token': 9345,
  'token_str': 'ዓመት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመት ተቆጥሯል ።'},
 {'score': 0.2229153960943222,
  'token': 9913,
  'token_str': 'አመት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመት ተቆጥሯል ።'},
 {'score': 0.1806153655052185,
  'token': 9617,
  'token_str': 'ዓመታት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታት ተቆጥሯል ።'},
 {'score': 0.05486353859305382,
  'token': 10898,
  'token_str': 'አመታት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመታት ተቆጥሯል ።'},
 {'score': 0.014157092198729515,
  'token': 28157,
  'token_str': '##ዓመት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተዓመት ተቆጥሯል ።'}]
```

# Finetuning

This model was finetuned and evaluated on the following Amharic NLP tasks

- **Sentiment Classification**
  - Dataset: [amharic-sentiment](https://huggingface.co/datasets/rasyosef/amharic-sentiment)
  - Code: https://github.com/rasyosef/amharic-sentiment-classification
- **Named Entity Recognition**
  - Dataset: [amharic-named-entity-recognition](https://huggingface.co/datasets/rasyosef/amharic-named-entity-recognition)
  - Code: https://github.com/rasyosef/amharic-named-entity-recognition
- **News Category Classification**
  - Dataset: [amharic-news-category-classification](https://github.com/rasyosef/amharic-news-category-classification)
  - Code: https://github.com/rasyosef/amharic-news-category-classification

### Finetuned Model Performance
The reported F1 scores are macro averages.

|Model|Size (# params)| Perplexity|Sentiment (F1)| Named Entity Recognition (F1)|
|-----|---------------|-----------|--------------|------------------------------|
|bert-medium-amharic|40.5M|13.74|0.83|0.68|
|**bert-small-amharic**|**27.8M**|**15.96**|**0.83**|**0.68**|
|bert-mini-amharic|10.7M|22.42|0.81|0.64|
|bert-tiny-amharic|4.18M|71.52|0.79|0.54|
|xlm-roberta-base|279M||0.83|0.73|
|am-roberta|443M||0.82|0.69|

### Amharic News Category Classification

|Model|Accuracy|Precision|Recall|F1|
|-----|--------|---------|------|--|
|**bert-small-amharic**|0.89|0.86|0.87|0.86|
|bert-mini-amharic|0.87|0.83|0.83|0.83|
|xlm-roberta-base|0.9|0.88|0.88|0.88|