Tagset
- O
- B-CITATION
- I-CITATION
- B-LAW
- I-LAW
Training
- The model was trained with the following hyperparamters:
- batch size: 64
- learning_rate: 0.00001
- number of training epochs: 50 (actually trained: 23)
- early stopping patience: 5
Predict scores
metric | score |
---|---|
de_predict/_CITATION_f1 | 97.93 |
de_predict/_CITATION_precision | 98.53 |
de_predict/_CITATION_recall | 97.34 |
de_predict/_LAW_f1 | 92.08 |
de_predict/_LAW_precision | 85.99 |
de_predict/_LAW_recall | 99.1 |
de_predict/_accuracy_normalized | 98.8 |
de_predict/_macro-f1 | 95.04 |
de_predict/_macro-precision | 98.22 |
de_predict/_macro-recall | 92.32 |
de_predict/_micro-f1 | 94.06 |
de_predict/_micro-precision | 98.49 |
de_predict/_micro-recall | 90.01 |
de_predict/_steps_per_second | 54.9 |
de_predict/_weighted-f1 | 93.97 |
de_predict/_weighted-precision | 98.55 |
de_predict/_weighted-recall | 90.01 |
fr_predict/_CITATION_f1 | 95.55 |
fr_predict/_CITATION_precision | 96.85 |
fr_predict/_CITATION_recall | 94.28 |
fr_predict/_LAW_f1 | 91.01 |
fr_predict/_LAW_precision | 83.67 |
fr_predict/_LAW_recall | 99.76 |
fr_predict/_accuracy_normalized | 98.31 |
fr_predict/_macro-f1 | 93.3 |
fr_predict/_macro-precision | 97.02 |
fr_predict/_macro-recall | 90.3 |
fr_predict/_micro-f1 | 92.06 |
fr_predict/_micro-precision | 98.42 |
fr_predict/_micro-recall | 86.47 |
fr_predict/_steps_per_second | 59.3 |
fr_predict/_weighted-f1 | 91.99 |
fr_predict/_weighted-precision | 98.62 |
fr_predict/_weighted-recall | 86.47 |
it_predict/_CITATION_f1 | 97.04 |
it_predict/_CITATION_precision | 97.7 |
it_predict/_CITATION_recall | 96.39 |
it_predict/_LAW_f1 | 90.99 |
it_predict/_LAW_precision | 84.23 |
it_predict/_LAW_recall | 98.94 |
it_predict/_accuracy_normalized | 98.92 |
it_predict/_macro-f1 | 94.13 |
it_predict/_macro-precision | 97.66 |
it_predict/_macro-recall | 91.2 |
it_predict/_micro-f1 | 93.11 |
it_predict/_micro-precision | 98.03 |
it_predict/_micro-recall | 88.67 |
it_predict/_steps_per_second | 56.3 |
it_predict/_weighted-f1 | 93 |
it_predict/_weighted-precision | 98.13 |
it_predict/_weighted-recall | 88.67 |
predict/_CITATION_f1 | 97.36 |
predict/_CITATION_precision | 98.11 |
predict/_CITATION_recall | 96.62 |
predict/_LAW_f1 | 91.68 |
predict/_LAW_precision | 85.15 |
predict/_LAW_recall | 99.3 |
predict/_accuracy_normalized | 98.68 |
predict/_macro-f1 | 94.56 |
predict/_macro-precision | 97.96 |
predict/_macro-recall | 91.7 |
predict/_micro-f1 | 93.43 |
predict/_micro-precision | 98.45 |
predict/_micro-recall | 88.91 |
predict/_steps_per_second | 55.7 |
predict/_weighted-f1 | 93.34 |
predict/_weighted-precision | 98.54 |
predict/_weighted-recall | 88.91 |
predict_samples | 28218 |
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.