ro-sentiment / README.md
andyP's picture
Update README.md
b438507
|
raw
history blame
7.12 kB
---
base_model: readerbench/RoBERT-base
language:
- ro
tags:
- sentiment
- classification
- romanian
- nlp
- bert
datasets:
- decathlon_reviews
- cinemagia_reviews
metrics:
- accuracy
- precision
- recall
- f1
- f1 weighted
model-index:
- name: ro-sentiment
results:
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Text Classification # Optional. Example: Speech Recognition
dataset:
type: ro_sent # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: Rommanian Sentiment Dataset # Required. A pretty name for the dataset. Example: Common Voice (French)
config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
split: all # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.85 # Required. Example: 20.90
name: Accuracy # Optional. Example: Test WER
- type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.85 # Required. Example: 20.90
name: Precision # Optional. Example: Test WER
- type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.85 # Required. Example: 20.90
name: Recall # Optional. Example: Test WER
- type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.85 # Required. Example: 20.90
name: Weighted F1 # Optional. Example: Test WER
- type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.84 # Required. Example: 20.90
name: Macro F1 # Optional. Example: Test WER
- task:
type: text-classification # Required. Example: automatic-speech-recognition
name: Text Classification # Optional. Example: Speech Recognition
dataset:
type: laroseda # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: A Large Romanian Sentiment Data Set # Required. A pretty name for the dataset. Example: Common Voice (French)
config: default # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
split: all # Optional. Example: test
metrics:
- type: accuracy # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.85 # Required. Example: 20.90
name: Accuracy # Optional. Example: Test WER
- type: precision # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.86 # Required. Example: 20.90
name: Precision # Optional. Example: Test WER
- type: recall # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.85 # Required. Example: 20.90
name: Recall # Optional. Example: Test WER
- type: f1_weighted # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.84 # Required. Example: 20.90
name: Weighted F1 # Optional. Example: Test WER
- type: f1_macro # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 0.84 # Required. Example: 20.90
name: Macro F1 # Optional. Example: Test WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RO-Sentiment
This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on the Decathlon reviews and Cinemagia reviews dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3923
- Accuracy: 0.8307
- Precision: 0.8366
- Recall: 0.8959
- F1: 0.8652
- F1 Weighted: 0.8287
Output labels:
- LABEL_0 = Negative Sentiment
- LABEL_1 = Positive Sentiment
### Evaluation on other datasets
**SENT_RO**
| |precision | recall | f1-score | support |
|:-------------:|:-----:|:----:|:------:|:--------:|
| Negative (0) | 0.79 | 0.83 | 0.81 | 11,675 |
| Positive (1) | 0.88 | 0.85 | 0.87 | 17,271 |
| | | | | |
| Accuracy | | | 0.85 | 28,946 |
| Macro Avg | 0.84 | 0.84 | 0.84 | 28,946 |
| Weighted Avg | 0.85 | 0.85 | 0.85 | 28,946 |
**LaRoSeDa**
| |precision | recall | f1-score | support |
|:-------------:|:-----:|:----:|:------:|:--------:|
| Negative (0) | 0.79 | 0.94 | 0.86 | 7,500 |
| Positive (1) | 0.93 | 0.75 | 0.83 | 7,500 |
| | | | | |
| Accuracy | | | 0.85 | 15,000 |
| Macro Avg | 0.86 | 0.85 | 0.84 | 15,000 |
| Weighted Avg | 0.86 | 0.85 | 0.84 | 15,000 |
## Model description
Finetuned Romanian BERT model for sentiment classification.
Trained on a mix of product reviews from Decathlon retailer website and movie reviews from cinemagia.
## Intended uses & limitations
Sentiment classification for Romanian Language.
Biased towards Product reviews.
There is no "neutral" sentiment label.
## Training and evaluation data
**Trained on:**
- Decathlon Dataset available on request
- Cinemagia Movie reviews public on kaggle [Link](https://www.kaggle.com/datasets/gringoandy/romanian-sentiment-movie-reviews)
**Evaluated on**
- Holdout data from training dataset
- RO_SENT Dataset
- LaROSeDa Dataset
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10 (Early stop epoch 3, best epoch 2)
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F1 Weighted |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| 0.4198 | 1.0 | 1629 | 0.3983 | 0.8377 | 0.8791 | 0.8721 | 0.8756 | 0.8380 |
| 0.3861 | **2.0** | 3258 | 0.4312 | 0.8429 | 0.8963 | 0.8665 | 0.8812 | **0.8442** |
| 0.3189 | 3.0 | 4887 | 0.3923 | 0.8307 | 0.8366 | 0.8959 | 0.8652 | 0.8287 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3