SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'오늘 제가 해야할 일이 무엇인가요!',
'언제쯤 친구가 여행 갈 수 있겠니?',
'시내 중심에 위치한 깔끔하고 머무르기 좋은 숙소 입니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3477 |
spearman_cosine | 0.3556 |
pearson_manhattan | 0.3674 |
spearman_manhattan | 0.3646 |
pearson_euclidean | 0.3607 |
spearman_euclidean | 0.3548 |
pearson_dot | 0.2125 |
spearman_dot | 0.2006 |
pearson_max | 0.3674 |
spearman_max | 0.3646 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9611 |
spearman_cosine | 0.9223 |
pearson_manhattan | 0.9518 |
spearman_manhattan | 0.9211 |
pearson_euclidean | 0.952 |
spearman_euclidean | 0.9217 |
pearson_dot | 0.9503 |
spearman_dot | 0.9045 |
pearson_max | 0.9611 |
spearman_max | 0.9223 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 7,654 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 19.59 tokens
- max: 58 tokens
- min: 6 tokens
- mean: 19.37 tokens
- max: 55 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence_0 sentence_1 label ‘인공지능 반도체 산업 발전전략’의 차질 없는 이행 및 성과점검을 위해 정부와 산·학·연이 참여하는 ‘인공지능 반도체 산업 전략회의’를 구성·운영한다.
정부, 산업계, 학계, 연구기관이 참여하는 '인공지능 반도체산업전략회의'를 구성하여 '인공지능 반도체산업 발전전략'의 성과를 점검할 예정입니다.
0.6
예상했던대로 가성비 대비 최고의 위치였어요.
처음에 예상했던것보다 위치가 훨씬 좋았어요
0.54
올해 처음 개최되는 투자유치설명회는 전문투자기관에 홍보할 기회를 얻기 힘든 1인 미디어 스타트업들의 민간 투자유치를 지원할 목적으로 마련됐다.
이번 발사는 저궤도위성에 이어 정지궤도위성에서 실시간으로 환경 감시 업무를 수행하는 세계 최초의 위성으로 기록됐다.
0.04
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | spearman_max |
---|---|---|---|
0 | 0 | - | 0.3646 |
1.0 | 479 | - | 0.9133 |
1.0438 | 500 | 0.0281 | - |
2.0 | 958 | - | 0.9181 |
2.0877 | 1000 | 0.006 | 0.9217 |
3.0 | 1437 | - | 0.9191 |
3.1315 | 1500 | 0.0036 | - |
4.0 | 1916 | - | 0.9223 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for realaer/klue-roberta-base-klue-sts
Base model
klue/roberta-baseEvaluation results
- Pearson Cosine on Unknownself-reported0.348
- Spearman Cosine on Unknownself-reported0.356
- Pearson Manhattan on Unknownself-reported0.367
- Spearman Manhattan on Unknownself-reported0.365
- Pearson Euclidean on Unknownself-reported0.361
- Spearman Euclidean on Unknownself-reported0.355
- Pearson Dot on Unknownself-reported0.213
- Spearman Dot on Unknownself-reported0.201
- Pearson Max on Unknownself-reported0.367
- Spearman Max on Unknownself-reported0.365