Gemma-2-Ataraxy-Gemmasutra-9B-slerp
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 29.87 |
IFEval (0-Shot) | 76.49 |
BBH (3-Shot) | 42.25 |
MATH Lvl 5 (4-Shot) | 1.74 |
GPQA (0-shot) | 10.74 |
MuSR (0-shot) | 12.39 |
MMLU-PRO (5-shot) | 35.63 |
- Downloads last month
- 3,063
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for recoilme/Gemma-2-Ataraxy-Gemmasutra-9B-slerp
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard76.490
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard42.250
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard1.740
- acc_norm on GPQA (0-shot)Open LLM Leaderboard10.740
- acc_norm on MuSR (0-shot)Open LLM Leaderboard12.390
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard35.630