reichenbach's picture
update model card README.md
e3a02d3
|
raw
history blame
2.88 kB
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.85
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7011
- Accuracy: 0.85
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1633 | 1.0 | 113 | 2.0443 | 0.48 |
| 1.5137 | 2.0 | 226 | 1.4296 | 0.63 |
| 1.2242 | 3.0 | 339 | 1.0546 | 0.72 |
| 0.9275 | 4.0 | 452 | 0.9730 | 0.73 |
| 0.6252 | 5.0 | 565 | 0.6862 | 0.84 |
| 0.403 | 6.0 | 678 | 0.5890 | 0.8 |
| 0.5256 | 7.0 | 791 | 0.5414 | 0.84 |
| 0.124 | 8.0 | 904 | 0.5469 | 0.81 |
| 0.1207 | 9.0 | 1017 | 0.5683 | 0.82 |
| 0.0434 | 10.0 | 1130 | 0.6445 | 0.83 |
| 0.0107 | 11.0 | 1243 | 0.7085 | 0.83 |
| 0.134 | 12.0 | 1356 | 0.6363 | 0.85 |
| 0.0056 | 13.0 | 1469 | 0.6332 | 0.85 |
| 0.0045 | 14.0 | 1582 | 0.6881 | 0.85 |
| 0.004 | 15.0 | 1695 | 0.6204 | 0.86 |
| 0.0033 | 16.0 | 1808 | 0.7015 | 0.84 |
| 0.046 | 17.0 | 1921 | 0.6880 | 0.85 |
| 0.0028 | 18.0 | 2034 | 0.6841 | 0.84 |
| 0.0027 | 19.0 | 2147 | 0.6894 | 0.85 |
| 0.0028 | 20.0 | 2260 | 0.7011 | 0.85 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.13.1
- Tokenizers 0.13.3