Edit model card

Model Card of lmqg/mbart-large-cc25-esquad-qg-ae

This model is fine-tuned version of facebook/mbart-large-cc25 for question generation and answer extraction jointly on the lmqg/qg_esquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="lmqg/mbart-large-cc25-esquad-qg-ae")

# model prediction
question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-esquad-qg-ae")

# answer extraction
answer = pipe("generate question: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")

# question generation
question = pipe("extract answers: <hl> En la diáspora somalí, múltiples eventos islámicos de recaudación de fondos se llevan a cabo cada año en ciudades como Birmingham, Londres, Toronto y Minneapolis, donde los académicos y profesionales somalíes dan conferencias y responden preguntas de la audiencia. <hl> El propósito de estos eventos es recaudar dinero para nuevas escuelas o universidades en Somalia, para ayudar a los somalíes que han sufrido como consecuencia de inundaciones y / o sequías, o para reunir fondos para la creación de nuevas mezquitas como.")

Evaluation

Score Type Dataset
BERTScore 79.36 default lmqg/qg_esquad
Bleu_1 22.05 default lmqg/qg_esquad
Bleu_2 14.55 default lmqg/qg_esquad
Bleu_3 10.34 default lmqg/qg_esquad
Bleu_4 7.61 default lmqg/qg_esquad
METEOR 19.58 default lmqg/qg_esquad
MoverScore 56.05 default lmqg/qg_esquad
ROUGE_L 20.95 default lmqg/qg_esquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 81.13 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 54.86 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 77.75 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 52.82 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 84.91 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 57.16 default lmqg/qg_esquad
Score Type Dataset
AnswerExactMatch 52.81 default lmqg/qg_esquad
AnswerF1Score 70.95 default lmqg/qg_esquad
BERTScore 86.7 default lmqg/qg_esquad
Bleu_1 32.77 default lmqg/qg_esquad
Bleu_2 28.12 default lmqg/qg_esquad
Bleu_3 24.52 default lmqg/qg_esquad
Bleu_4 21.5 default lmqg/qg_esquad
METEOR 40.42 default lmqg/qg_esquad
MoverScore 77.96 default lmqg/qg_esquad
ROUGE_L 46.66 default lmqg/qg_esquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_esquad
  • dataset_name: default
  • input_types: ['paragraph_answer', 'paragraph_sentence']
  • output_types: ['question', 'answer']
  • prefix_types: ['qg', 'ae']
  • model: facebook/mbart-large-cc25
  • max_length: 512
  • max_length_output: 32
  • epoch: 5
  • batch: 2
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 32
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train research-backup/mbart-large-cc25-esquad-qg-ae

Evaluation results

  • BLEU4 (Question Generation) on lmqg/qg_esquad
    self-reported
    7.610
  • ROUGE-L (Question Generation) on lmqg/qg_esquad
    self-reported
    20.950
  • METEOR (Question Generation) on lmqg/qg_esquad
    self-reported
    19.580
  • BERTScore (Question Generation) on lmqg/qg_esquad
    self-reported
    79.360
  • MoverScore (Question Generation) on lmqg/qg_esquad
    self-reported
    56.050
  • QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquad
    self-reported
    81.130
  • QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquad
    self-reported
    84.910
  • QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquad
    self-reported
    77.750
  • QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquad
    self-reported
    54.860
  • QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) on lmqg/qg_esquad
    self-reported
    57.160