Edit model card

Model Card of vocabtrimmer/mt5-base-trimmed-de-15000-dequad-qg

This model is fine-tuned version of vocabtrimmer/mt5-base-trimmed-de-15000 for question generation task on the lmqg/qg_dequad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="de", model="vocabtrimmer/mt5-base-trimmed-de-15000-dequad-qg")

# model prediction
questions = model.generate_q(list_context="das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).", list_answer="1855")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-base-trimmed-de-15000-dequad-qg")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>")

Evaluation

Score Type Dataset
BERTScore 71.98 default lmqg/qg_dequad
Bleu_1 8.9 default lmqg/qg_dequad
Bleu_2 3.03 default lmqg/qg_dequad
Bleu_3 0.94 default lmqg/qg_dequad
Bleu_4 0.35 default lmqg/qg_dequad
METEOR 7.3 default lmqg/qg_dequad
MoverScore 50.07 default lmqg/qg_dequad
ROUGE_L 8.49 default lmqg/qg_dequad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_dequad
  • dataset_name: default
  • input_types: paragraph_answer
  • output_types: question
  • prefix_types: None
  • model: vocabtrimmer/mt5-base-trimmed-de-15000
  • max_length: 512
  • max_length_output: 32
  • epoch: 8
  • batch: 16
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 4
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train research-backup/mt5-base-trimmed-de-15000-dequad-qg

Evaluation results