|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
base_model: russellc/roberta-news-classifier |
|
model-index: |
|
- name: roberta-news-classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-news-classifier |
|
|
|
This model is a fine-tuned version of [russellc/roberta-news-classifier](https://huggingface.co/russellc/roberta-news-classifier) on the custom(Kaggle) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1043 |
|
- Accuracy: 0.9786 |
|
- F1: 0.9786 |
|
- Precision: 0.9786 |
|
- Recall: 0.9786 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.1327 | 1.0 | 123 | 0.1043 | 0.9786 | 0.9786 | 0.9786 | 0.9786 | |
|
| 0.1103 | 2.0 | 246 | 0.1157 | 0.9735 | 0.9735 | 0.9735 | 0.9735 | |
|
| 0.102 | 3.0 | 369 | 0.1104 | 0.9735 | 0.9735 | 0.9735 | 0.9735 | |
|
| 0.0825 | 4.0 | 492 | 0.1271 | 0.9714 | 0.9714 | 0.9714 | 0.9714 | |
|
| 0.055 | 5.0 | 615 | 0.1296 | 0.9724 | 0.9724 | 0.9724 | 0.9724 | |
|
|
|
### Evaluation results |
|
|
|
***** Running Prediction ***** |
|
Num examples = 980 |
|
Batch size = 64 |
|
|
|
precision recall f1-score support |
|
|
|
dunya 0.99 0.96 0.97 147 |
|
ekonomi 0.96 0.96 0.96 141 |
|
kultur 0.97 0.99 0.98 142 |
|
saglik 0.99 0.98 0.98 148 |
|
siyaset 0.98 0.98 0.98 134 |
|
spor 1.00 1.00 1.00 139 |
|
teknoloji 0.96 0.98 0.97 129 |
|
accuracy -- -- 0.98 980 |
|
macro avg 0.98 0.98 0.98 980 |
|
weighted avg 0.98 0.98 0.98 980 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|