metadata
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
metrics:
- accuracy
model-index:
- name: Mistral-7B-v0.1_district-court-db
results: []
Mistral-7B-v0.1_district-court-db
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0357
- Precision Micro: 0.8047
- Precision Macro: 0.6995
- Recall Micro: 0.8047
- Recall Macro: 0.6609
- F1 Micro: 0.8047
- F1 Macro: 0.6661
- Accuracy: 0.8047
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 725
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Micro | Precision Macro | Recall Micro | Recall Macro | F1 Micro | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.0886 | 0.08 | 50 | 0.1082 | 0.5774 | 0.3988 | 0.5774 | 0.3124 | 0.5774 | 0.3222 | 0.5774 |
0.0572 | 0.16 | 100 | 0.0832 | 0.5877 | 0.4716 | 0.5877 | 0.3681 | 0.5877 | 0.3797 | 0.5877 |
0.0496 | 0.24 | 150 | 0.0525 | 0.7311 | 0.5911 | 0.7311 | 0.5747 | 0.7311 | 0.5703 | 0.7311 |
0.0541 | 0.32 | 200 | 0.0464 | 0.7566 | 0.6151 | 0.7566 | 0.5606 | 0.7566 | 0.5584 | 0.7566 |
0.0481 | 0.4 | 250 | 0.0433 | 0.7811 | 0.6636 | 0.7811 | 0.6514 | 0.7811 | 0.6369 | 0.7811 |
0.053 | 0.48 | 300 | 0.0452 | 0.7632 | 0.6936 | 0.7632 | 0.6461 | 0.7632 | 0.6338 | 0.7632 |
0.0401 | 0.56 | 350 | 0.0399 | 0.7943 | 0.7381 | 0.7943 | 0.6604 | 0.7943 | 0.6697 | 0.7943 |
0.0509 | 0.64 | 400 | 0.0393 | 0.8009 | 0.6546 | 0.8009 | 0.6612 | 0.8009 | 0.6501 | 0.8009 |
0.0474 | 0.72 | 450 | 0.0401 | 0.8019 | 0.7255 | 0.8019 | 0.6927 | 0.8019 | 0.6865 | 0.8019 |
0.045 | 0.79 | 500 | 0.0379 | 0.8009 | 0.7147 | 0.8009 | 0.7108 | 0.8009 | 0.6977 | 0.8009 |
0.0335 | 0.87 | 550 | 0.0369 | 0.8151 | 0.7046 | 0.8151 | 0.7335 | 0.8151 | 0.7135 | 0.8151 |
0.0429 | 0.95 | 600 | 0.0367 | 0.7962 | 0.7081 | 0.7962 | 0.6959 | 0.7962 | 0.6878 | 0.7962 |
0.0253 | 1.03 | 650 | 0.0342 | 0.8255 | 0.7370 | 0.8255 | 0.6975 | 0.8255 | 0.7098 | 0.8255 |
0.0311 | 1.11 | 700 | 0.0357 | 0.8047 | 0.6995 | 0.8047 | 0.6609 | 0.8047 | 0.6661 | 0.8047 |
Framework versions
- PEFT 0.7.1
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.17.1
- Tokenizers 0.15.1