Edit model card

Mistral-portuguese-luana-7b

This model was trained with a superset of 200,000 instructions in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Mistral 7b, the model was adjusted mainly for instructional tasks.

If you are looking for enhanced compatibility, the Luana model also has a GGUF family that can be run with LlamaCpp. You can explore the GGUF models starting with the one below:

Explore this and other models to find the best fit for your needs!

How to use

FULL MODEL : A100

HALF MODEL: L4

8bit or 4bit : T4 or V100

You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 7b) to perform much better.

!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/Mistral-portuguese-luana-7b", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Mistral-portuguese-luana-7b")
model.eval()

You can use with Pipeline but in this example i will use such as Streaming


inputs = tokenizer([f"""<s>[INST] Abaixo estÑ uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto.
Escreva uma resposta que complete adequadamente o pedido.
### instrução: aja como um professor de matemÑtica e me explique porque 2 + 2 = 4.
[/INST]"""], return_tensors="pt")

inputs.to(model.device)

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)

If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.

4bits example

from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True
)

model = AutoModelForCausalLM.from_pretrained(
    base_model,
    quantization_config=bnb_config,
    device_map={"": 0}
)

LangChain

Bode Logo

Open Portuguese LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Average 64.27
ENEM Challenge (No Images) 58.64
BLUEX (No Images) 47.98
OAB Exams 38.82
Assin2 RTE 90.63
Assin2 STS 75.81
FaQuAD NLI 57.79
HateBR Binary 77.24
PT Hate Speech Binary 68.50
tweetSentBR 63

Comments

Any idea, help or report will always be welcome.

email: rhaymisoncristian@gmail.com

Downloads last month
26
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rhaymison/Mistral-portuguese-luana-7b

Finetuned
(366)
this model
Finetunes
7 models
Quantizations
7 models

Datasets used to train rhaymison/Mistral-portuguese-luana-7b

Spaces using rhaymison/Mistral-portuguese-luana-7b 6

Evaluation results