metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: FacebookAI/roberta-large
metrics:
- accuracy
widget:
- text: Just checking in, how have you been feeling since our last chat?
- text: I’m looking forward to learning more from you.
- text: Take it easy!
- text: It was great seeing you. Let's catch up again soon!
- text: Let’s make sure you’re not carrying too much; how are you?
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with FacebookAI/roberta-large
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.96
name: Accuracy
SetFit with FacebookAI/roberta-large
This is a SetFit model that can be used for Text Classification. This SetFit model uses FacebookAI/roberta-large as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: FacebookAI/roberta-large
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
true |
|
false |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.96 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("richie-ghost/setfit-FacebookAI-roberta-large-phatic")
# Run inference
preds = model("Take it easy!")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 9.8722 | 108 |
Label | Training Sample Count |
---|---|
false | 191 |
true | 169 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.4745 | - |
0.0122 | 50 | 0.441 | - |
0.0245 | 100 | 0.4422 | - |
0.0367 | 150 | 0.2339 | - |
0.0489 | 200 | 0.1182 | - |
0.0612 | 250 | 0.0806 | - |
0.0734 | 300 | 0.1183 | - |
0.0856 | 350 | 0.0551 | - |
0.0978 | 400 | 0.0146 | - |
0.1101 | 450 | 0.0115 | - |
0.1223 | 500 | 0.0042 | - |
0.1345 | 550 | 0.0053 | - |
0.1468 | 600 | 0.0021 | - |
0.1590 | 650 | 0.0596 | - |
0.1712 | 700 | 0.0029 | - |
0.1835 | 750 | 0.0009 | - |
0.1957 | 800 | 0.0002 | - |
0.2079 | 850 | 0.0005 | - |
0.2202 | 900 | 0.0013 | - |
0.2324 | 950 | 0.0008 | - |
0.2446 | 1000 | 0.0004 | - |
0.2568 | 1050 | 0.0004 | - |
0.2691 | 1100 | 0.0004 | - |
0.2813 | 1150 | 0.0003 | - |
0.2935 | 1200 | 0.0003 | - |
0.3058 | 1250 | 0.0012 | - |
0.3180 | 1300 | 0.0001 | - |
0.3302 | 1350 | 0.0002 | - |
0.3425 | 1400 | 0.0003 | - |
0.3547 | 1450 | 0.0024 | - |
0.3669 | 1500 | 0.0008 | - |
0.3792 | 1550 | 0.0015 | - |
0.3914 | 1600 | 0.0002 | - |
0.4036 | 1650 | 0.0002 | - |
0.4159 | 1700 | 0.1842 | - |
0.4281 | 1750 | 0.0009 | - |
0.4403 | 1800 | 0.0001 | - |
0.4525 | 1850 | 0.0013 | - |
0.4648 | 1900 | 0.0637 | - |
0.4770 | 1950 | 0.0002 | - |
0.4892 | 2000 | 0.0007 | - |
0.5015 | 2050 | 0.0001 | - |
0.5137 | 2100 | 0.0 | - |
0.5259 | 2150 | 0.0 | - |
0.5382 | 2200 | 0.0 | - |
0.5504 | 2250 | 0.0 | - |
0.5626 | 2300 | 0.0001 | - |
0.5749 | 2350 | 0.0 | - |
0.5871 | 2400 | 0.0 | - |
0.5993 | 2450 | 0.0 | - |
0.6115 | 2500 | 0.0 | - |
0.6238 | 2550 | 0.0 | - |
0.6360 | 2600 | 0.0 | - |
0.6482 | 2650 | 0.0 | - |
0.6605 | 2700 | 0.0001 | - |
0.6727 | 2750 | 0.0 | - |
0.6849 | 2800 | 0.0 | - |
0.6972 | 2850 | 0.0 | - |
0.7094 | 2900 | 0.0 | - |
0.7216 | 2950 | 0.0 | - |
0.7339 | 3000 | 0.0 | - |
0.7461 | 3050 | 0.0 | - |
0.7583 | 3100 | 0.0001 | - |
0.7705 | 3150 | 0.0 | - |
0.7828 | 3200 | 0.0 | - |
0.7950 | 3250 | 0.0 | - |
0.8072 | 3300 | 0.0 | - |
0.8195 | 3350 | 0.0 | - |
0.8317 | 3400 | 0.0 | - |
0.8439 | 3450 | 0.0001 | - |
0.8562 | 3500 | 0.0 | - |
0.8684 | 3550 | 0.0 | - |
0.8806 | 3600 | 0.0 | - |
0.8929 | 3650 | 0.0 | - |
0.9051 | 3700 | 0.0 | - |
0.9173 | 3750 | 0.0 | - |
0.9295 | 3800 | 0.0 | - |
0.9418 | 3850 | 0.0 | - |
0.9540 | 3900 | 0.0 | - |
0.9662 | 3950 | 0.0 | - |
0.9785 | 4000 | 0.0 | - |
0.9907 | 4050 | 0.0 | - |
1.0 | 4088 | - | 0.0815 |
1.0029 | 4100 | 0.0 | - |
1.0152 | 4150 | 0.0 | - |
1.0274 | 4200 | 0.0 | - |
1.0396 | 4250 | 0.0 | - |
1.0519 | 4300 | 0.0 | - |
1.0641 | 4350 | 0.0 | - |
1.0763 | 4400 | 0.0 | - |
1.0886 | 4450 | 0.0 | - |
1.1008 | 4500 | 0.0 | - |
1.1130 | 4550 | 0.0 | - |
1.1252 | 4600 | 0.0 | - |
1.1375 | 4650 | 0.0 | - |
1.1497 | 4700 | 0.0 | - |
1.1619 | 4750 | 0.0 | - |
1.1742 | 4800 | 0.0 | - |
1.1864 | 4850 | 0.0 | - |
1.1986 | 4900 | 0.0 | - |
1.2109 | 4950 | 0.0 | - |
1.2231 | 5000 | 0.0 | - |
1.2353 | 5050 | 0.0 | - |
1.2476 | 5100 | 0.0 | - |
1.2598 | 5150 | 0.0 | - |
1.2720 | 5200 | 0.0 | - |
1.2842 | 5250 | 0.0 | - |
1.2965 | 5300 | 0.0 | - |
1.3087 | 5350 | 0.0 | - |
1.3209 | 5400 | 0.0 | - |
1.3332 | 5450 | 0.0 | - |
1.3454 | 5500 | 0.0 | - |
1.3576 | 5550 | 0.0 | - |
1.3699 | 5600 | 0.0 | - |
1.3821 | 5650 | 0.0 | - |
1.3943 | 5700 | 0.0 | - |
1.4066 | 5750 | 0.0 | - |
1.4188 | 5800 | 0.0 | - |
1.4310 | 5850 | 0.0 | - |
1.4432 | 5900 | 0.0 | - |
1.4555 | 5950 | 0.0 | - |
1.4677 | 6000 | 0.0 | - |
1.4799 | 6050 | 0.0 | - |
1.4922 | 6100 | 0.0 | - |
1.5044 | 6150 | 0.0112 | - |
1.5166 | 6200 | 0.4712 | - |
1.5289 | 6250 | 0.3977 | - |
1.5411 | 6300 | 0.2112 | - |
1.5533 | 6350 | 0.318 | - |
1.5656 | 6400 | 0.2523 | - |
1.5778 | 6450 | 0.2829 | - |
1.5900 | 6500 | 0.2736 | - |
1.6023 | 6550 | 0.2493 | - |
1.6145 | 6600 | 0.3112 | - |
1.6267 | 6650 | 0.2291 | - |
1.6389 | 6700 | 0.2855 | - |
1.6512 | 6750 | 0.2642 | - |
1.6634 | 6800 | 0.2376 | - |
1.6756 | 6850 | 0.2983 | - |
1.6879 | 6900 | 0.2853 | - |
1.7001 | 6950 | 0.3095 | - |
1.7123 | 7000 | 0.2497 | - |
1.7246 | 7050 | 0.2305 | - |
1.7368 | 7100 | 0.2433 | - |
1.7490 | 7150 | 0.2505 | - |
1.7613 | 7200 | 0.2292 | - |
1.7735 | 7250 | 0.3028 | - |
1.7857 | 7300 | 0.2394 | - |
1.7979 | 7350 | 0.2601 | - |
1.8102 | 7400 | 0.2417 | - |
1.8224 | 7450 | 0.2086 | - |
1.8346 | 7500 | 0.2573 | - |
1.8469 | 7550 | 0.2344 | - |
1.8591 | 7600 | 0.2381 | - |
1.8713 | 7650 | 0.2772 | - |
1.8836 | 7700 | 0.2614 | - |
1.8958 | 7750 | 0.2659 | - |
1.9080 | 7800 | 0.2536 | - |
1.9203 | 7850 | 0.2385 | - |
1.9325 | 7900 | 0.2695 | - |
1.9447 | 7950 | 0.2512 | - |
1.9569 | 8000 | 0.2216 | - |
1.9692 | 8050 | 0.2291 | - |
1.9814 | 8100 | 0.2443 | - |
1.9936 | 8150 | 0.2579 | - |
2.0 | 8176 | - | 0.5 |
2.0059 | 8200 | 0.2605 | - |
2.0181 | 8250 | 0.2528 | - |
2.0303 | 8300 | 0.2361 | - |
2.0426 | 8350 | 0.2891 | - |
2.0548 | 8400 | 0.2692 | - |
2.0670 | 8450 | 0.25 | - |
2.0793 | 8500 | 0.2362 | - |
2.0915 | 8550 | 0.2833 | - |
2.1037 | 8600 | 0.2698 | - |
2.1159 | 8650 | 0.2195 | - |
2.1282 | 8700 | 0.2621 | - |
2.1404 | 8750 | 0.2564 | - |
2.1526 | 8800 | 0.2657 | - |
2.1649 | 8850 | 0.2629 | - |
2.1771 | 8900 | 0.2503 | - |
2.1893 | 8950 | 0.2583 | - |
2.2016 | 9000 | 0.2694 | - |
2.2138 | 9050 | 0.2824 | - |
2.2260 | 9100 | 0.2675 | - |
2.2383 | 9150 | 0.2699 | - |
2.2505 | 9200 | 0.2515 | - |
2.2627 | 9250 | 0.2511 | - |
2.2750 | 9300 | 0.2518 | - |
2.2872 | 9350 | 0.2555 | - |
2.2994 | 9400 | 0.2512 | - |
2.3116 | 9450 | 0.2374 | - |
2.3239 | 9500 | 0.2546 | - |
2.3361 | 9550 | 0.2846 | - |
2.3483 | 9600 | 0.2617 | - |
2.3606 | 9650 | 0.2474 | - |
2.3728 | 9700 | 0.2454 | - |
2.3850 | 9750 | 0.2265 | - |
2.3973 | 9800 | 0.2272 | - |
2.4095 | 9850 | 0.2442 | - |
2.4217 | 9900 | 0.236 | - |
2.4340 | 9950 | 0.2382 | - |
2.4462 | 10000 | 0.2645 | - |
2.4584 | 10050 | 0.2707 | - |
2.4706 | 10100 | 0.2573 | - |
2.4829 | 10150 | 0.2435 | - |
2.4951 | 10200 | 0.2705 | - |
2.5073 | 10250 | 0.2808 | - |
2.5196 | 10300 | 0.2581 | - |
2.5318 | 10350 | 0.2544 | - |
2.5440 | 10400 | 0.2333 | - |
2.5563 | 10450 | 0.2544 | - |
2.5685 | 10500 | 0.2497 | - |
2.5807 | 10550 | 0.2575 | - |
2.5930 | 10600 | 0.2382 | - |
2.6052 | 10650 | 0.2451 | - |
2.6174 | 10700 | 0.2702 | - |
2.6296 | 10750 | 0.2569 | - |
2.6419 | 10800 | 0.249 | - |
2.6541 | 10850 | 0.2366 | - |
2.6663 | 10900 | 0.2278 | - |
2.6786 | 10950 | 0.2568 | - |
2.6908 | 11000 | 0.2721 | - |
2.7030 | 11050 | 0.2593 | - |
2.7153 | 11100 | 0.2439 | - |
2.7275 | 11150 | 0.2543 | - |
2.7397 | 11200 | 0.2478 | - |
2.7520 | 11250 | 0.2325 | - |
2.7642 | 11300 | 0.2538 | - |
2.7764 | 11350 | 0.2968 | - |
2.7886 | 11400 | 0.2505 | - |
2.8009 | 11450 | 0.2377 | - |
2.8131 | 11500 | 0.2547 | - |
2.8253 | 11550 | 0.2529 | - |
2.8376 | 11600 | 0.2502 | - |
2.8498 | 11650 | 0.2293 | - |
2.8620 | 11700 | 0.2676 | - |
2.8743 | 11750 | 0.2371 | - |
2.8865 | 11800 | 0.2495 | - |
2.8987 | 11850 | 0.2937 | - |
2.9110 | 11900 | 0.2355 | - |
2.9232 | 11950 | 0.2482 | - |
2.9354 | 12000 | 0.2336 | - |
2.9477 | 12050 | 0.2344 | - |
2.9599 | 12100 | 0.257 | - |
2.9721 | 12150 | 0.2557 | - |
2.9843 | 12200 | 0.2854 | - |
2.9966 | 12250 | 0.2455 | - |
3.0 | 12264 | - | 0.5 |
3.0088 | 12300 | 0.2323 | - |
3.0210 | 12350 | 0.2566 | - |
3.0333 | 12400 | 0.2319 | - |
3.0455 | 12450 | 0.2552 | - |
3.0577 | 12500 | 0.2796 | - |
3.0700 | 12550 | 0.2823 | - |
3.0822 | 12600 | 0.2303 | - |
3.0944 | 12650 | 0.2448 | - |
3.1067 | 12700 | 0.2502 | - |
3.1189 | 12750 | 0.2516 | - |
3.1311 | 12800 | 0.2537 | - |
3.1433 | 12850 | 0.251 | - |
3.1556 | 12900 | 0.2639 | - |
3.1678 | 12950 | 0.2321 | - |
3.1800 | 13000 | 0.282 | - |
3.1923 | 13050 | 0.2577 | - |
3.2045 | 13100 | 0.2448 | - |
3.2167 | 13150 | 0.2352 | - |
3.2290 | 13200 | 0.281 | - |
3.2412 | 13250 | 0.2337 | - |
3.2534 | 13300 | 0.268 | - |
3.2657 | 13350 | 0.261 | - |
3.2779 | 13400 | 0.2378 | - |
3.2901 | 13450 | 0.2588 | - |
3.3023 | 13500 | 0.266 | - |
3.3146 | 13550 | 0.2604 | - |
3.3268 | 13600 | 0.2202 | - |
3.3390 | 13650 | 0.2217 | - |
3.3513 | 13700 | 0.2464 | - |
3.3635 | 13750 | 0.2684 | - |
3.3757 | 13800 | 0.2279 | - |
3.3880 | 13850 | 0.2379 | - |
3.4002 | 13900 | 0.2741 | - |
3.4124 | 13950 | 0.2713 | - |
3.4247 | 14000 | 0.2581 | - |
3.4369 | 14050 | 0.2638 | - |
3.4491 | 14100 | 0.2125 | - |
3.4614 | 14150 | 0.2348 | - |
3.4736 | 14200 | 0.2253 | - |
3.4858 | 14250 | 0.2627 | - |
3.4980 | 14300 | 0.2463 | - |
3.5103 | 14350 | 0.2533 | - |
3.5225 | 14400 | 0.2422 | - |
3.5347 | 14450 | 0.2296 | - |
3.5470 | 14500 | 0.2532 | - |
3.5592 | 14550 | 0.2733 | - |
3.5714 | 14600 | 0.2258 | - |
3.5837 | 14650 | 0.2253 | - |
3.5959 | 14700 | 0.2388 | - |
3.6081 | 14750 | 0.2217 | - |
3.6204 | 14800 | 0.3033 | - |
3.6326 | 14850 | 0.2349 | - |
3.6448 | 14900 | 0.2596 | - |
3.6570 | 14950 | 0.2415 | - |
3.6693 | 15000 | 0.2494 | - |
3.6815 | 15050 | 0.2826 | - |
3.6937 | 15100 | 0.2633 | - |
3.7060 | 15150 | 0.2636 | - |
3.7182 | 15200 | 0.2351 | - |
3.7304 | 15250 | 0.264 | - |
3.7427 | 15300 | 0.2652 | - |
3.7549 | 15350 | 0.2724 | - |
3.7671 | 15400 | 0.2731 | - |
3.7794 | 15450 | 0.2825 | - |
3.7916 | 15500 | 0.2611 | - |
3.8038 | 15550 | 0.2574 | - |
3.8160 | 15600 | 0.261 | - |
3.8283 | 15650 | 0.219 | - |
3.8405 | 15700 | 0.2323 | - |
3.8527 | 15750 | 0.2442 | - |
3.8650 | 15800 | 0.2509 | - |
3.8772 | 15850 | 0.26 | - |
3.8894 | 15900 | 0.2475 | - |
3.9017 | 15950 | 0.2452 | - |
3.9139 | 16000 | 0.2598 | - |
3.9261 | 16050 | 0.2377 | - |
3.9384 | 16100 | 0.2445 | - |
3.9506 | 16150 | 0.2451 | - |
3.9628 | 16200 | 0.2714 | - |
3.9750 | 16250 | 0.2755 | - |
3.9873 | 16300 | 0.2579 | - |
3.9995 | 16350 | 0.2338 | - |
4.0 | 16352 | - | 0.5 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}