YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
モデル詳細
このモデルは東京大学松尾・岩沢研究室のLLM講座2024の課題のために作られたものです。
Base Model type: llm-jp/llm-jp-3-13b
Language(s) (NLP): Main languages are English, Japanese
License: This model is licensed under Apache license 2.0
学習データ
- ichikara-instruction
インストール
必要なパッケージのインストール:
!pip install -q datasets==3.0.2 transformers==4.45.0 accelerate==1.0.1 peft==0.13.2 trl==0.11.4 bitsandbytes==0.44.1
使用方法
以下は、モデルの基本的な使用例です:
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import (
LoraConfig,
PeftModel,
get_peft_model,
)
import torch
from tqdm import tqdm
import json
Google Colabを利用している場合は、シークレットキーにHF_TOKENを登録します。
from google.colab import userdata
HF_TOKEN = userdata.get("HF_TOKEN")
# ベースとなるモデルと学習したLoRAのアダプタ。
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "rikioka/llm-jp-3-13b-finetune"
# 量子化の設定
bnb_config = BitsAndBytesConfig(
load_in_8bit=True,
)
# LLMの読み込み
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=bnb_config,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
token=HF_TOKEN
)
# Tokenizerの読み込み
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True,
token=HF_TOKEN
)
# LoRAの設定を定義
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=["gate_proj", "down_proj", "up_proj", "q_proj", "k_proj", "v_proj", "o_proj"]
)
# 元のモデルにLoRAのアダプタを統合
model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN)
dataフォルダ配下にテストデータを配置します。
datasets = []
with open("./data/elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
from tqdm import tqdm
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
import re
with open(f"./submit/outputs.jsonl", "w", encoding="utf-8") as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.