YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

モデル詳細

このモデルは東京大学松尾・岩沢研究室のLLM講座2024の課題のために作られたものです。

Base Model type: llm-jp/llm-jp-3-13b
Language(s) (NLP): Main languages are English, Japanese
License: This model is licensed under Apache license 2.0

学習データ

  • ichikara-instruction

インストール

必要なパッケージのインストール:

!pip install -q datasets==3.0.2 transformers==4.45.0 accelerate==1.0.1 peft==0.13.2 trl==0.11.4 bitsandbytes==0.44.1

使用方法

以下は、モデルの基本的な使用例です:

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)

from peft import (
    LoraConfig,
    PeftModel,
    get_peft_model,
)

import torch
from tqdm import tqdm
import json

Google Colabを利用している場合は、シークレットキーにHF_TOKENを登録します。

from google.colab import userdata
HF_TOKEN = userdata.get("HF_TOKEN")
# ベースとなるモデルと学習したLoRAのアダプタ。
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "rikioka/llm-jp-3-13b-finetune"
# 量子化の設定
bnb_config = BitsAndBytesConfig(
    load_in_8bit=True,
)

# LLMの読み込み
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=bnb_config,
    device_map="auto",
    torch_dtype="auto",
    trust_remote_code=True,
    token=HF_TOKEN
)

# Tokenizerの読み込み
tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    trust_remote_code=True,
    token=HF_TOKEN
)

# LoRAの設定を定義
peft_config = LoraConfig(
    r=16,
    lora_alpha=32,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=["gate_proj", "down_proj", "up_proj", "q_proj", "k_proj", "v_proj", "o_proj"]
)

# 元のモデルにLoRAのアダプタを統合
model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN)

dataフォルダ配下にテストデータを配置します。

datasets = []
with open("./data/elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""
from tqdm import tqdm

results = []
for data in tqdm(datasets):

  input = data["input"]

  prompt = f"""### 指示
  {input}
  ### 回答
  """

  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)

  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input, "output": output})
import re

with open(f"./submit/outputs.jsonl", "w", encoding="utf-8") as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.