metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-tiny-khmer-aug-v2
results: []
whisper-tiny-khmer-aug-v2
This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2740
- Wer: 69.5152
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8546 | 0.9993 | 766 | 0.4256 | 86.9629 |
0.3717 | 2.0 | 1533 | 0.3108 | 82.3739 |
0.283 | 2.9993 | 2299 | 0.2706 | 74.4446 |
0.2343 | 4.0 | 3066 | 0.2663 | 75.4338 |
0.2058 | 4.9993 | 3832 | 0.2580 | 71.1043 |
0.1805 | 6.0 | 4599 | 0.2582 | 69.7097 |
0.1608 | 6.9993 | 5365 | 0.2508 | 69.9530 |
0.1437 | 8.0 | 6132 | 0.2586 | 67.6504 |
0.1309 | 8.9993 | 6898 | 0.2634 | 74.7851 |
0.1206 | 9.9935 | 7660 | 0.2740 | 69.5152 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.19.1