metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper_tiny_char
results: []
whisper_tiny_char
This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3979
- Wer: 100.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.1664 | 1.0 | 859 | 0.5140 | 100.0 |
0.5122 | 2.0 | 1718 | 0.4044 | 100.0 |
0.4035 | 3.0 | 2577 | 0.3596 | 100.0 |
0.3403 | 4.0 | 3436 | 0.3394 | 100.0 |
0.2967 | 5.0 | 4295 | 0.3395 | 100.0 |
0.2582 | 6.0 | 5154 | 0.3314 | 100.0 |
0.2286 | 7.0 | 6013 | 0.3571 | 100.0 |
0.2034 | 8.0 | 6872 | 0.3590 | 100.0 |
0.181 | 9.0 | 7731 | 0.3706 | 100.0 |
0.1618 | 10.0 | 8590 | 0.3979 | 100.0 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.19.1