File size: 2,437 Bytes
8e2be84
 
 
 
 
 
 
 
 
 
 
ae4875a
f464b76
 
8e2be84
eb4f161
 
 
 
 
f464b76
eb4f161
1fae383
eb4f161
 
3170081
eb4f161
3170081
1fae383
eb4f161
 
1fae383
 
 
 
 
 
ae4875a
1fae383
 
347b4ac
1fae383
16d2b5a
25640a7
16d2b5a
 
25640a7
 
16d2b5a
 
 
 
 
 
 
 
25640a7
 
 
16d2b5a
25640a7
16d2b5a
1fae383
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
language: ja
thumbnail: https://github.com/rinnakk/japanese-gpt2/blob/master/rinna.png
tags:
- gpt2
- text-generation
- lm
- nlp
license: mit
datasets:
- cc100
- wikipedia
widget:
- text: "生命、宇宙、そして万物についての究極の疑問の答えは"
---

# japanese-gpt2-medium

![rinna-icon](./rinna.png)

This repository provides a medium-sized Japanese GPT-2 model. The model was trained using code from Github repository [rinnakk/japanese-pretrained-models](https://github.com/rinnakk/japanese-pretrained-models) by [rinna Co., Ltd.](https://corp.rinna.co.jp/)

# How to use the model

~~~~
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt2-medium", use_fast=False)
tokenizer.do_lower_case = True  # due to some bug of tokenizer config loading

model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt2-medium")
~~~~

# Model architecture
A 24-layer, 1024-hidden-size transformer-based language model.

# Training
The model was trained on [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective on 8\\*V100 GPUs for around 30 days. It reaches around 18 perplexity on a chosen validation set from the same data.

# Tokenization
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer, the vocabulary was trained on the Japanese Wikipedia using the official sentencepiece training script.

# How to cite
```bibtex
@misc{rinna-japanese-gpt2-medium,
    title = {rinna/japanese-gpt2-medium},
    author = {Zhao, Tianyu and Sawada, Kei},
    url = {https://huggingface.co/rinna/japanese-gpt2-medium}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}
```

# Licenese
[The MIT license](https://opensource.org/licenses/MIT)