Feature Extraction
Transformers
PyTorch
Safetensors
Japanese
hubert
speech
yky-h's picture
Add model
29f8087
|
raw
history blame
2.79 kB
metadata
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
language: ja
license: apache-2.0
datasets: reazon-research/reazonspeech
inference: false
tags:
  - hubert
  - speech

rinna/japanese-hubert-large

rinna-icon

Overview

This is a Japanese HuBERT Large model trained by rinna Co., Ltd.


How to use the model

import soundfile as sf
from transformers import AutoFeatureExtractor, AutoModel

model_name = "rinna/japanese-hubert-large"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
model.eval()

raw_speech_16kHz, sr = sf.read(audio_file)
inputs = feature_extractor(
    raw_speech_16kHz,
    return_tensors="pt",
    sampling_rate=sr,
)
outputs = model(**inputs)

print(f"Input:  {inputs.input_values.size()}")  # [1, #samples]
print(f"Output: {outputs.last_hidden_state.size()}")  # [1, #frames, 1024]

A fairseq checkpoint file can also be available here.


How to cite

@misc{rinna-japanese-hubert-large, 
  title={rinna/japanese-hubert-large}, 
  author={Hono, Yukiya and Mitsui, Kentaro and Sawada, Kei},
  url={https://huggingface.co/rinna/japanese-hubert-large}
}

Citations

@article{hsu2021hubert,
  author={Hsu, Wei-Ning and Bolte, Benjamin and Tsai, Yao-Hung Hubert and Lakhotia, Kushal and Salakhutdinov, Ruslan and Mohamed, Abdelrahman},
  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
  title={HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units},
  year={2021},
  volume={29},
  number={},
  pages={3451-3460},
  doi={10.1109/TASLP.2021.3122291}
}

License

The Apache 2.0 license