llama-3-youko-70b / README.md
keisawada's picture
Update README.md
255a385 verified
metadata
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: llama3
datasets:
  - mc4
  - wikipedia
  - EleutherAI/pile
  - oscar-corpus/colossal-oscar-1.0
  - cc100
language:
  - ja
  - en
tags:
  - llama
  - llama-3
inference: false
base_model: meta-llama/Meta-Llama-3-70B

Llama 3 Youko 70B (rinna/llama-3-youko-70b)

rinna-icon

Overview

We conduct continual pre-training of meta-llama/Meta-Llama-3-70B on 5B tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks.

The name youko comes from the Japanese word 妖狐/ようこ/Youko, which is a kind of Japanese mythical creature (妖怪/ようかい/Youkai).

Size Continual Pre-Training Instruction-Tuning
8B Llama 3 Youko 8B [HF] [GPTQ] Llama 3 Youko 8B Instruct [HF] [GPTQ]
70B Llama 3 Youko 70B [HF] [GPTQ] Llama 3 Youko 70B Instruct [HF] [GPTQ]

Benchmarking

Please refer to rinna's LM benchmark page.


How to use the model

import transformers
import torch

model_id = "rinna/llama-3-youko-70b"
pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto"
)
output = pipeline(
    "西田幾多郎は、",
    max_new_tokens=256,
    do_sample=True
)
print(output[0]["generated_text"])

Tokenization

The model uses the original meta-llama/Meta-Llama-3-70B tokenizer.


How to cite

@misc{rinna-llama-3-youko-70b,
    title = {rinna/llama-3-youko-70b},
    author = {Mitsuda, Koh and Chen, Xinqi and Wakatsuki, Toshiaki and Sawada, Kei},
    url = {https://huggingface.co/rinna/llama-3-youko-70b}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}

References

@article{llama3modelcard,
    title = {Llama 3 Model Card},
    author = {AI@Meta},
    year = {2024},
    url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}

@software{gpt-neox-library,
    title = {{GPT}-{N}eo{X}: Large Scale Autoregressive Language Modeling in {P}y{T}orch},
    author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
    doi = {10.5281/zenodo.5879544},
    month = {8},
    year = {2021},
    version = {0.0.1},
    url = {https://www.github.com/eleutherai/gpt-neox}
}

License

Meta Llama 3 Community License