File size: 6,075 Bytes
781c973
593f020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: llama3
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
metrics:
- accuracy
model-index:
- name: LLAMA3_8b_LORA_FOR_CLASSIFICATION
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LLAMA3_8b_LORA_FOR_CLASSIFICATION

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6062
- Balanced Accuracy: 0.86
- Accuracy: 0.86
- Micro F1: 0.86
- Macro F1: 0.8600
- Weighted F1: 0.8600
- Classification Report:               precision    recall  f1-score   support

           0       0.86      0.85      0.86       200
           1       0.86      0.86      0.86       200

    accuracy                           0.86       400
   macro avg       0.86      0.86      0.86       400
weighted avg       0.86      0.86      0.86       400


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Accuracy | Balanced Accuracy | Classification Report                                                                                                                                                                                                                                                                                                                  | Validation Loss | Macro F1 | Micro F1 | Weighted F1 |
|:-------------:|:-----:|:----:|:--------:|:-----------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------:|:--------:|:--------:|:-----------:|
| 0.5306        | 1.0   | 732  | 0.8125   | 0.8125            |               precision    recall  f1-score   support

           0       0.76      0.92      0.83       200
           1       0.90      0.70      0.79       200

    accuracy                           0.81       400
   macro avg       0.83      0.81      0.81       400
weighted avg       0.83      0.81      0.81       400
 | 0.4840          | 0.8103   | 0.8125   | 0.8103      |
| 0.4284        | 2.0   | 1464 | 0.4444   | 0.815             | 0.815                                                                                                                                                                                                                                                                                                                                  | 0.815           | 0.8147   | 0.8147   |               precision    recall  f1-score   support

           0       0.84      0.78      0.81       200
           1       0.79      0.85      0.82       200

    accuracy                           0.81       400
   macro avg       0.82      0.81      0.81       400
weighted avg       0.82      0.81      0.81       400
|
| 0.3809        | 3.0   | 2196 | 0.4513   | 0.8475            | 0.8475                                                                                                                                                                                                                                                                                                                                 | 0.8475          | 0.8470   | 0.8470   |               precision    recall  f1-score   support

           0       0.81      0.91      0.86       200
           1       0.89      0.79      0.84       200

    accuracy                           0.85       400
   macro avg       0.85      0.85      0.85       400
weighted avg       0.85      0.85      0.85       400
|
| 0.2413        | 4.0   | 2928 | 0.5228   | 0.87              | 0.87                                                                                                                                                                                                                                                                                                                                   | 0.87            | 0.8700   | 0.8700   |               precision    recall  f1-score   support

           0       0.87      0.86      0.87       200
           1       0.87      0.88      0.87       200

    accuracy                           0.87       400
   macro avg       0.87      0.87      0.87       400
weighted avg       0.87      0.87      0.87       400
|
| 0.1499        | 5.0   | 3660 | 0.6062   | 0.86              | 0.86                                                                                                                                                                                                                                                                                                                                   | 0.86            | 0.8600   | 0.8600   |               precision    recall  f1-score   support

           0       0.86      0.85      0.86       200
           1       0.86      0.86      0.86       200

    accuracy                           0.86       400
   macro avg       0.86      0.86      0.86       400
weighted avg       0.86      0.86      0.86       400
|


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1