ecc_segformerv3 / README.md
rishitunu's picture
End of training
fa56bfe
---
license: other
base_model: nvidia/mit-b5
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: ecc_segformerv3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ecc_segformerv3
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the rishitunu/ecc_crackdetector_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1344
- Mean Iou: 0.0005
- Mean Accuracy: 0.0010
- Overall Accuracy: 0.0010
- Accuracy Background: nan
- Accuracy Crack: 0.0010
- Iou Background: 0.0
- Iou Crack: 0.0010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
| 0.1306 | 1.0 | 1001 | 0.1114 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
| 0.107 | 2.0 | 2002 | 0.1238 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
| 0.1285 | 3.0 | 3003 | 0.1631 | 0.0024 | 0.0049 | 0.0049 | nan | 0.0049 | 0.0 | 0.0048 |
| 0.0887 | 4.0 | 4004 | 0.1083 | 0.0002 | 0.0003 | 0.0003 | nan | 0.0003 | 0.0 | 0.0003 |
| 0.0828 | 5.0 | 5000 | 0.1344 | 0.0005 | 0.0010 | 0.0010 | nan | 0.0010 | 0.0 | 0.0010 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cpu
- Datasets 2.14.4
- Tokenizers 0.13.3