Edit model card

klasifikasiburung_new

This model is a fine-tuned version of RobertZ2011/resnet-18-birb on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1769
  • Accuracy: 0.7604
  • Precision: 0.7654
  • Recall: 0.7604
  • F1: 0.7572

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.3725 1.0 375 2.1701 0.5720 0.6410 0.5720 0.5531
1.9971 2.0 750 1.7855 0.6595 0.6896 0.6595 0.6456
1.6092 3.0 1125 1.5948 0.7026 0.7201 0.7026 0.6921
1.5044 4.0 1500 1.4862 0.7173 0.7288 0.7173 0.7078
1.2893 5.0 1875 1.4145 0.7309 0.7402 0.7309 0.7236
1.2276 6.0 2250 1.3653 0.7373 0.7454 0.7373 0.7310
1.1467 7.0 2625 1.3099 0.7478 0.7536 0.7478 0.7420
1.0491 8.0 3000 1.2975 0.7451 0.7518 0.7451 0.7399
0.9231 9.0 3375 1.2683 0.7518 0.7574 0.7518 0.7470
0.8979 10.0 3750 1.2389 0.7561 0.7609 0.7561 0.7519
0.9467 11.0 4125 1.2400 0.7566 0.7608 0.7566 0.7517
0.8315 12.0 4500 1.2164 0.7565 0.7623 0.7565 0.7530
0.7316 13.0 4875 1.2005 0.7570 0.7612 0.7570 0.7531
0.6786 14.0 5250 1.2080 0.7560 0.7623 0.7560 0.7527
0.7923 15.0 5625 1.1869 0.7582 0.7628 0.7582 0.7545
0.7415 16.0 6000 1.1802 0.7575 0.7633 0.7575 0.7548
0.6292 17.0 6375 1.1994 0.7542 0.7602 0.7542 0.7513
0.7069 18.0 6750 1.1769 0.7604 0.7654 0.7604 0.7572
0.69 19.0 7125 1.1743 0.7572 0.7610 0.7572 0.7542
0.6476 20.0 7500 1.1704 0.7585 0.7638 0.7585 0.7558

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
11.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for riyadifirman/klasifikasiburung_new

Finetuned
(4)
this model

Space using riyadifirman/klasifikasiburung_new 1