See axolotl config
axolotl version: 0.4.0
base_model: rizla/rizla-17
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: meta-math/MetaMathQA-40K
type:
system_prompt: "You are an expert problem solver who is great at teaching how to solve problems via first principles reasoning"
field_system: system
field_instruction: query
field_output: response
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./lorazapam-out
## You can optionally freeze the entire model and unfreeze a subset of parameters
# - lm_head.*
# - model.embed_tokens.*
# - model.layers.2[0-9]+.block_sparse_moe.gate.*
# - model.layers.2[0-9]+.block_sparse_moe.experts.*
# - model.layers.3[0-9]+.block_sparse_moe.gate.*
# - model.layers.3[0-9]+.block_sparse_moe.experts.*
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 512
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 16
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: false
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
# deepspeed: deepspeed_configs/zero_1.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
lorazapam-out
This model is a fine-tuned version of rizla/rizla-17 on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for rizla/rizla-156
Base model
mistralai/Mixtral-8x7B-v0.1
Finetuned
mistralai/Mixtral-8x7B-Instruct-v0.1
Finetuned
rizla/rizla-17