Upload folder using huggingface_hub
Browse files- README.md +154 -0
- adapter_config.json +33 -0
- adapter_model.bin +3 -0
- checkpoint-601/README.md +204 -0
- checkpoint-601/adapter_config.json +33 -0
- checkpoint-601/adapter_model.safetensors +3 -0
- checkpoint-601/global_step601/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-601/global_step601/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-601/latest +1 -0
- checkpoint-601/rng_state.pth +3 -0
- checkpoint-601/scheduler.pt +3 -0
- checkpoint-601/trainer_state.json +3627 -0
- checkpoint-601/training_args.bin +3 -0
- checkpoint-601/zero_to_fp32.py +592 -0
- config.json +46 -0
- runs/Feb03_03-36-39_19503a009d2c/events.out.tfevents.1706931401.19503a009d2c.4586.0 +3 -0
- runs/Feb03_03-38-23_19503a009d2c/events.out.tfevents.1706931504.19503a009d2c.4673.0 +3 -0
- runs/Feb03_03-50-56_19503a009d2c/events.out.tfevents.1706932258.19503a009d2c.5617.0 +3 -0
- runs/Feb03_03-53-37_19503a009d2c/events.out.tfevents.1706932424.19503a009d2c.5964.0 +3 -0
- runs/Feb03_03-55-24_19503a009d2c/events.out.tfevents.1706932529.19503a009d2c.6106.0 +3 -0
- runs/Feb03_03-58-43_19503a009d2c/events.out.tfevents.1706932728.19503a009d2c.6196.0 +3 -0
- runs/Feb03_04-04-38_19503a009d2c/events.out.tfevents.1706933083.19503a009d2c.6301.0 +3 -0
- runs/Feb03_04-07-08_19503a009d2c/events.out.tfevents.1706933232.19503a009d2c.6407.0 +3 -0
- runs/Feb03_04-11-41_19503a009d2c/events.out.tfevents.1706933506.19503a009d2c.6498.0 +3 -0
- runs/Feb03_04-13-40_19503a009d2c/events.out.tfevents.1706933624.19503a009d2c.6813.0 +3 -0
- special_tokens_map.json +35 -0
- tokenizer.model +3 -0
- tokenizer_config.json +52 -0
README.md
CHANGED
@@ -1,3 +1,157 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: rizla/rizla-17
|
7 |
+
model-index:
|
8 |
+
- name: lorazapam-out
|
9 |
+
results: []
|
10 |
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
16 |
+
<details><summary>See axolotl config</summary>
|
17 |
+
|
18 |
+
axolotl version: `0.4.0`
|
19 |
+
```yaml
|
20 |
+
base_model: rizla/rizla-17
|
21 |
+
model_type: AutoModelForCausalLM
|
22 |
+
tokenizer_type: LlamaTokenizer
|
23 |
+
trust_remote_code: true
|
24 |
+
load_in_8bit: false
|
25 |
+
load_in_4bit: true
|
26 |
+
strict: false
|
27 |
+
|
28 |
+
datasets:
|
29 |
+
- path: meta-math/MetaMathQA-40K
|
30 |
+
type:
|
31 |
+
system_prompt: "You are an expert problem solver who is great at teaching how to solve problems via first principles reasoning"
|
32 |
+
field_system: system
|
33 |
+
field_instruction: query
|
34 |
+
field_output: response
|
35 |
+
format: "[INST] {instruction} [/INST]"
|
36 |
+
no_input_format: "[INST] {instruction} [/INST]"
|
37 |
+
|
38 |
+
dataset_prepared_path: last_run_prepared
|
39 |
+
val_set_size: 0.0
|
40 |
+
output_dir: ./lorazapam-out
|
41 |
+
## You can optionally freeze the entire model and unfreeze a subset of parameters
|
42 |
+
# - lm_head.*
|
43 |
+
# - model.embed_tokens.*
|
44 |
+
# - model.layers.2[0-9]+.block_sparse_moe.gate.*
|
45 |
+
# - model.layers.2[0-9]+.block_sparse_moe.experts.*
|
46 |
+
# - model.layers.3[0-9]+.block_sparse_moe.gate.*
|
47 |
+
# - model.layers.3[0-9]+.block_sparse_moe.experts.*
|
48 |
+
|
49 |
+
model_config:
|
50 |
+
output_router_logits: true
|
51 |
+
|
52 |
+
adapter: qlora
|
53 |
+
lora_model_dir:
|
54 |
+
|
55 |
+
sequence_len: 512
|
56 |
+
sample_packing: true
|
57 |
+
pad_to_sequence_len: true
|
58 |
+
|
59 |
+
lora_r: 32
|
60 |
+
lora_alpha: 16
|
61 |
+
lora_dropout: 0.05
|
62 |
+
lora_target_linear: true
|
63 |
+
lora_fan_in_fan_out:
|
64 |
+
|
65 |
+
wandb_project:
|
66 |
+
wandb_entity:
|
67 |
+
wandb_watch:
|
68 |
+
wandb_name:
|
69 |
+
wandb_log_model:
|
70 |
+
|
71 |
+
gradient_accumulation_steps: 2
|
72 |
+
micro_batch_size: 16
|
73 |
+
num_epochs: 1
|
74 |
+
optimizer: adamw_bnb_8bit
|
75 |
+
lr_scheduler: cosine
|
76 |
+
learning_rate: 0.0002
|
77 |
+
|
78 |
+
train_on_inputs: false
|
79 |
+
group_by_length: false
|
80 |
+
bf16: true
|
81 |
+
fp16:
|
82 |
+
tf32: false
|
83 |
+
|
84 |
+
gradient_checkpointing: true
|
85 |
+
early_stopping_patience:
|
86 |
+
resume_from_checkpoint:
|
87 |
+
local_rank:
|
88 |
+
logging_steps: 1
|
89 |
+
xformers_attention: false
|
90 |
+
flash_attention: true
|
91 |
+
|
92 |
+
loss_watchdog_threshold: 5.0
|
93 |
+
loss_watchdog_patience: 3
|
94 |
+
|
95 |
+
warmup_steps: 10
|
96 |
+
evals_per_epoch: 1
|
97 |
+
eval_table_size:
|
98 |
+
eval_table_max_new_tokens: 128
|
99 |
+
saves_per_epoch: 1
|
100 |
+
debug:
|
101 |
+
# deepspeed: deepspeed_configs/zero_1.json
|
102 |
+
weight_decay: 0.0
|
103 |
+
fsdp:
|
104 |
+
fsdp_config:
|
105 |
+
special_tokens:
|
106 |
+
bos_token: "<s>"
|
107 |
+
eos_token: "</s>"
|
108 |
+
unk_token: "<unk>"
|
109 |
+
|
110 |
+
```
|
111 |
+
|
112 |
+
</details><br>
|
113 |
+
|
114 |
+
# lorazapam-out
|
115 |
+
|
116 |
+
This model is a fine-tuned version of [rizla/rizla-17](https://huggingface.co/rizla/rizla-17) on the None dataset.
|
117 |
+
|
118 |
+
## Model description
|
119 |
+
|
120 |
+
More information needed
|
121 |
+
|
122 |
+
## Intended uses & limitations
|
123 |
+
|
124 |
+
More information needed
|
125 |
+
|
126 |
+
## Training and evaluation data
|
127 |
+
|
128 |
+
More information needed
|
129 |
+
|
130 |
+
## Training procedure
|
131 |
+
|
132 |
+
### Training hyperparameters
|
133 |
+
|
134 |
+
The following hyperparameters were used during training:
|
135 |
+
- learning_rate: 0.0002
|
136 |
+
- train_batch_size: 16
|
137 |
+
- eval_batch_size: 16
|
138 |
+
- seed: 42
|
139 |
+
- distributed_type: multi-GPU
|
140 |
+
- gradient_accumulation_steps: 2
|
141 |
+
- total_train_batch_size: 32
|
142 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
143 |
+
- lr_scheduler_type: cosine
|
144 |
+
- lr_scheduler_warmup_steps: 10
|
145 |
+
- num_epochs: 1
|
146 |
+
|
147 |
+
### Training results
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
### Framework versions
|
152 |
+
|
153 |
+
- PEFT 0.8.2
|
154 |
+
- Transformers 4.38.0.dev0
|
155 |
+
- Pytorch 2.1.2+cu121
|
156 |
+
- Datasets 2.16.1
|
157 |
+
- Tokenizers 0.15.0
|
adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "rizla/rizla-17",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"v_proj",
|
23 |
+
"w2",
|
24 |
+
"w1",
|
25 |
+
"k_proj",
|
26 |
+
"gate",
|
27 |
+
"o_proj",
|
28 |
+
"w3",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b69b55ff756739b2cfbb33842728f2fabba87d84afac92381411bc636db6471a
|
3 |
+
size 352960418
|
checkpoint-601/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: rizla/rizla-17
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.8.2
|
checkpoint-601/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "rizla/rizla-17",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"v_proj",
|
23 |
+
"w2",
|
24 |
+
"w1",
|
25 |
+
"k_proj",
|
26 |
+
"gate",
|
27 |
+
"o_proj",
|
28 |
+
"w3",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
checkpoint-601/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
|
3 |
+
size 48
|
checkpoint-601/global_step601/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0efcfd30ef0e98aaef40ec83c39cd06ede030aa4a9addc567cd9df1c8c4cb175
|
3 |
+
size 1058858128
|
checkpoint-601/global_step601/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b4831e463f5f6d0efc2c9322e9e25477305bae9dfc55581c3cb8f6711a0512d
|
3 |
+
size 246308720
|
checkpoint-601/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step601
|
checkpoint-601/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79c6866b8b8da812d24116d346cafad093a94c83cbc28645c27f1f56139f31e7
|
3 |
+
size 14244
|
checkpoint-601/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0719fbae2fb6995577344ae4fe1584ae2a14167fbf1694858b0016649c911ae
|
3 |
+
size 1064
|
checkpoint-601/trainer_state.json
ADDED
@@ -0,0 +1,3627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 601,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 2e-05,
|
14 |
+
"loss": 0.547,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"learning_rate": 4e-05,
|
20 |
+
"loss": 0.5148,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.0,
|
25 |
+
"learning_rate": 6e-05,
|
26 |
+
"loss": 0.5241,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01,
|
31 |
+
"learning_rate": 8e-05,
|
32 |
+
"loss": 0.3872,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.01,
|
37 |
+
"learning_rate": 0.0001,
|
38 |
+
"loss": 0.3484,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.01,
|
43 |
+
"learning_rate": 0.00012,
|
44 |
+
"loss": 0.2567,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.01,
|
49 |
+
"learning_rate": 0.00014,
|
50 |
+
"loss": 0.2197,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"learning_rate": 0.00016,
|
56 |
+
"loss": 0.2134,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.01,
|
61 |
+
"learning_rate": 0.00018,
|
62 |
+
"loss": 0.188,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.02,
|
67 |
+
"learning_rate": 0.0002,
|
68 |
+
"loss": 0.2067,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.02,
|
73 |
+
"learning_rate": 0.00019999858715745195,
|
74 |
+
"loss": 0.1878,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.02,
|
79 |
+
"learning_rate": 0.00019999434866973016,
|
80 |
+
"loss": 0.1898,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.02,
|
85 |
+
"learning_rate": 0.00019998728465660105,
|
86 |
+
"loss": 0.1904,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.02,
|
91 |
+
"learning_rate": 0.0001999773953176713,
|
92 |
+
"loss": 0.157,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.02,
|
97 |
+
"learning_rate": 0.00019996468093238257,
|
98 |
+
"loss": 0.1442,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.03,
|
103 |
+
"learning_rate": 0.00019994914186000328,
|
104 |
+
"loss": 0.1884,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.03,
|
109 |
+
"learning_rate": 0.00019993077853961872,
|
110 |
+
"loss": 0.1518,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.03,
|
115 |
+
"learning_rate": 0.00019990959149011848,
|
116 |
+
"loss": 0.1615,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.03,
|
121 |
+
"learning_rate": 0.00019988558131018186,
|
122 |
+
"loss": 0.1421,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.03,
|
127 |
+
"learning_rate": 0.00019985874867826096,
|
128 |
+
"loss": 0.1438,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.03,
|
133 |
+
"learning_rate": 0.00019982909435256144,
|
134 |
+
"loss": 0.1365,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.04,
|
139 |
+
"learning_rate": 0.00019979661917102115,
|
140 |
+
"loss": 0.127,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.04,
|
145 |
+
"learning_rate": 0.00019976132405128647,
|
146 |
+
"loss": 0.145,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.04,
|
151 |
+
"learning_rate": 0.00019972320999068636,
|
152 |
+
"loss": 0.1647,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.04,
|
157 |
+
"learning_rate": 0.0001996822780662041,
|
158 |
+
"loss": 0.137,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.04,
|
163 |
+
"learning_rate": 0.00019963852943444702,
|
164 |
+
"loss": 0.1427,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.04,
|
169 |
+
"learning_rate": 0.0001995919653316137,
|
170 |
+
"loss": 0.1156,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.05,
|
175 |
+
"learning_rate": 0.000199542587073459,
|
176 |
+
"loss": 0.1295,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.05,
|
181 |
+
"learning_rate": 0.00019949039605525703,
|
182 |
+
"loss": 0.1465,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.05,
|
187 |
+
"learning_rate": 0.00019943539375176164,
|
188 |
+
"loss": 0.1371,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.05,
|
193 |
+
"learning_rate": 0.00019937758171716468,
|
194 |
+
"loss": 0.1276,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.05,
|
199 |
+
"learning_rate": 0.00019931696158505223,
|
200 |
+
"loss": 0.1166,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.05,
|
205 |
+
"learning_rate": 0.00019925353506835826,
|
206 |
+
"loss": 0.1194,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.06,
|
211 |
+
"learning_rate": 0.00019918730395931649,
|
212 |
+
"loss": 0.1146,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.06,
|
217 |
+
"learning_rate": 0.00019911827012940946,
|
218 |
+
"loss": 0.1539,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.06,
|
223 |
+
"learning_rate": 0.0001990464355293158,
|
224 |
+
"loss": 1.9511,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.06,
|
229 |
+
"learning_rate": 0.00019897180218885507,
|
230 |
+
"loss": 0.1222,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.06,
|
235 |
+
"learning_rate": 0.00019889437221693053,
|
236 |
+
"loss": 0.1223,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.06,
|
241 |
+
"learning_rate": 0.0001988141478014693,
|
242 |
+
"loss": 0.1353,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.07,
|
247 |
+
"learning_rate": 0.00019873113120936074,
|
248 |
+
"loss": 0.1265,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.07,
|
253 |
+
"learning_rate": 0.00019864532478639234,
|
254 |
+
"loss": 0.1288,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.07,
|
259 |
+
"learning_rate": 0.00019855673095718336,
|
260 |
+
"loss": 0.128,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.07,
|
265 |
+
"learning_rate": 0.0001984653522251165,
|
266 |
+
"loss": 0.1297,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.07,
|
271 |
+
"learning_rate": 0.00019837119117226688,
|
272 |
+
"loss": 0.1265,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.07,
|
277 |
+
"learning_rate": 0.0001982742504593294,
|
278 |
+
"loss": 0.1269,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.08,
|
283 |
+
"learning_rate": 0.00019817453282554333,
|
284 |
+
"loss": 0.1407,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.08,
|
289 |
+
"learning_rate": 0.00019807204108861502,
|
290 |
+
"loss": 0.1311,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.08,
|
295 |
+
"learning_rate": 0.0001979667781446381,
|
296 |
+
"loss": 0.1312,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.08,
|
301 |
+
"learning_rate": 0.00019785874696801202,
|
302 |
+
"loss": 0.1335,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.08,
|
307 |
+
"learning_rate": 0.00019774795061135752,
|
308 |
+
"loss": 0.121,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.08,
|
313 |
+
"learning_rate": 0.00019763439220543084,
|
314 |
+
"loss": 0.1268,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.09,
|
319 |
+
"learning_rate": 0.00019751807495903484,
|
320 |
+
"loss": 0.1353,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.09,
|
325 |
+
"learning_rate": 0.00019739900215892867,
|
326 |
+
"loss": 0.1242,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.09,
|
331 |
+
"learning_rate": 0.0001972771771697347,
|
332 |
+
"loss": 0.1048,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.09,
|
337 |
+
"learning_rate": 0.00019715260343384347,
|
338 |
+
"loss": 0.1329,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.09,
|
343 |
+
"learning_rate": 0.00019702528447131646,
|
344 |
+
"loss": 0.1197,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.09,
|
349 |
+
"learning_rate": 0.00019689522387978666,
|
350 |
+
"loss": 0.1463,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.1,
|
355 |
+
"learning_rate": 0.00019676242533435678,
|
356 |
+
"loss": 0.1296,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.1,
|
361 |
+
"learning_rate": 0.00019662689258749554,
|
362 |
+
"loss": 0.1243,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.1,
|
367 |
+
"learning_rate": 0.00019648862946893158,
|
368 |
+
"loss": 0.1257,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.1,
|
373 |
+
"learning_rate": 0.00019634763988554522,
|
374 |
+
"loss": 0.1348,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.1,
|
379 |
+
"learning_rate": 0.0001962039278212581,
|
380 |
+
"loss": 0.1128,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.1,
|
385 |
+
"learning_rate": 0.00019605749733692064,
|
386 |
+
"loss": 0.1227,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.11,
|
391 |
+
"learning_rate": 0.00019590835257019714,
|
392 |
+
"loss": 0.1329,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.11,
|
397 |
+
"learning_rate": 0.00019575649773544913,
|
398 |
+
"loss": 0.1291,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.11,
|
403 |
+
"learning_rate": 0.00019560193712361596,
|
404 |
+
"loss": 0.119,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.11,
|
409 |
+
"learning_rate": 0.00019544467510209388,
|
410 |
+
"loss": 0.126,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.11,
|
415 |
+
"learning_rate": 0.00019528471611461235,
|
416 |
+
"loss": 0.1158,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.11,
|
421 |
+
"learning_rate": 0.00019512206468110863,
|
422 |
+
"loss": 0.1309,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.12,
|
427 |
+
"learning_rate": 0.00019495672539760007,
|
428 |
+
"loss": 0.1203,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.12,
|
433 |
+
"learning_rate": 0.00019478870293605416,
|
434 |
+
"loss": 0.107,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.12,
|
439 |
+
"learning_rate": 0.0001946180020442565,
|
440 |
+
"loss": 0.1249,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.12,
|
445 |
+
"learning_rate": 0.00019444462754567682,
|
446 |
+
"loss": 0.1163,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.12,
|
451 |
+
"learning_rate": 0.00019426858433933247,
|
452 |
+
"loss": 0.1192,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.12,
|
457 |
+
"learning_rate": 0.00019408987739965005,
|
458 |
+
"loss": 0.1205,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.13,
|
463 |
+
"learning_rate": 0.00019390851177632497,
|
464 |
+
"loss": 0.1205,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.13,
|
469 |
+
"learning_rate": 0.00019372449259417857,
|
470 |
+
"loss": 0.1247,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.13,
|
475 |
+
"learning_rate": 0.0001935378250530135,
|
476 |
+
"loss": 0.1195,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.13,
|
481 |
+
"learning_rate": 0.00019334851442746664,
|
482 |
+
"loss": 0.1131,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.13,
|
487 |
+
"learning_rate": 0.00019315656606686013,
|
488 |
+
"loss": 0.1119,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.13,
|
493 |
+
"learning_rate": 0.00019296198539505013,
|
494 |
+
"loss": 0.1137,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.14,
|
499 |
+
"learning_rate": 0.00019276477791027374,
|
500 |
+
"loss": 0.1052,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.14,
|
505 |
+
"learning_rate": 0.00019256494918499346,
|
506 |
+
"loss": 0.1204,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.14,
|
511 |
+
"learning_rate": 0.00019236250486573978,
|
512 |
+
"loss": 0.1158,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.14,
|
517 |
+
"learning_rate": 0.00019215745067295169,
|
518 |
+
"loss": 0.1151,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.14,
|
523 |
+
"learning_rate": 0.0001919497924008149,
|
524 |
+
"loss": 0.1274,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.14,
|
529 |
+
"learning_rate": 0.00019173953591709828,
|
530 |
+
"loss": 0.1229,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.15,
|
535 |
+
"learning_rate": 0.000191526687162988,
|
536 |
+
"loss": 0.1194,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.15,
|
541 |
+
"learning_rate": 0.0001913112521529195,
|
542 |
+
"loss": 0.1409,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.15,
|
547 |
+
"learning_rate": 0.00019109323697440782,
|
548 |
+
"loss": 0.1274,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.15,
|
553 |
+
"learning_rate": 0.00019087264778787534,
|
554 |
+
"loss": 0.1188,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.15,
|
559 |
+
"learning_rate": 0.00019064949082647786,
|
560 |
+
"loss": 0.1149,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.15,
|
565 |
+
"learning_rate": 0.0001904237723959283,
|
566 |
+
"loss": 0.115,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.16,
|
571 |
+
"learning_rate": 0.00019019549887431877,
|
572 |
+
"loss": 0.1297,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.16,
|
577 |
+
"learning_rate": 0.00018996467671194016,
|
578 |
+
"loss": 0.1286,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.16,
|
583 |
+
"learning_rate": 0.00018973131243109988,
|
584 |
+
"loss": 0.1061,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.16,
|
589 |
+
"learning_rate": 0.00018949541262593762,
|
590 |
+
"loss": 0.1189,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.16,
|
595 |
+
"learning_rate": 0.00018925698396223909,
|
596 |
+
"loss": 0.1372,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.16,
|
601 |
+
"learning_rate": 0.0001890160331772474,
|
602 |
+
"loss": 0.118,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.17,
|
607 |
+
"learning_rate": 0.00018877256707947306,
|
608 |
+
"loss": 0.1109,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.17,
|
613 |
+
"learning_rate": 0.00018852659254850126,
|
614 |
+
"loss": 0.1142,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.17,
|
619 |
+
"learning_rate": 0.00018827811653479768,
|
620 |
+
"loss": 0.1117,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.17,
|
625 |
+
"learning_rate": 0.00018802714605951199,
|
626 |
+
"loss": 0.1251,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.17,
|
631 |
+
"learning_rate": 0.00018777368821427953,
|
632 |
+
"loss": 0.1153,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.17,
|
637 |
+
"learning_rate": 0.00018751775016102087,
|
638 |
+
"loss": 0.1288,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.18,
|
643 |
+
"learning_rate": 0.00018725933913173938,
|
644 |
+
"loss": 0.1261,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.18,
|
649 |
+
"learning_rate": 0.00018699846242831706,
|
650 |
+
"loss": 0.1349,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.18,
|
655 |
+
"learning_rate": 0.00018673512742230802,
|
656 |
+
"loss": 0.1145,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.18,
|
661 |
+
"learning_rate": 0.00018646934155473022,
|
662 |
+
"loss": 0.1206,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.18,
|
667 |
+
"learning_rate": 0.0001862011123358554,
|
668 |
+
"loss": 0.1169,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.18,
|
673 |
+
"learning_rate": 0.00018593044734499655,
|
674 |
+
"loss": 0.1256,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.19,
|
679 |
+
"learning_rate": 0.00018565735423029404,
|
680 |
+
"loss": 0.1233,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.19,
|
685 |
+
"learning_rate": 0.00018538184070849924,
|
686 |
+
"loss": 0.1252,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.19,
|
691 |
+
"learning_rate": 0.00018510391456475676,
|
692 |
+
"loss": 0.1174,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.19,
|
697 |
+
"learning_rate": 0.00018482358365238413,
|
698 |
+
"loss": 0.1205,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.19,
|
703 |
+
"learning_rate": 0.0001845408558926502,
|
704 |
+
"loss": 0.1298,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.19,
|
709 |
+
"learning_rate": 0.00018425573927455117,
|
710 |
+
"loss": 0.1085,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.2,
|
715 |
+
"learning_rate": 0.0001839682418545848,
|
716 |
+
"loss": 0.1363,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.2,
|
721 |
+
"learning_rate": 0.00018367837175652284,
|
722 |
+
"loss": 0.1228,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.2,
|
727 |
+
"learning_rate": 0.0001833861371711814,
|
728 |
+
"loss": 0.1259,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.2,
|
733 |
+
"learning_rate": 0.00018309154635618965,
|
734 |
+
"loss": 0.1246,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.2,
|
739 |
+
"learning_rate": 0.00018279460763575637,
|
740 |
+
"loss": 0.1288,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.2,
|
745 |
+
"learning_rate": 0.0001824953294004347,
|
746 |
+
"loss": 0.1203,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.21,
|
751 |
+
"learning_rate": 0.00018219372010688515,
|
752 |
+
"loss": 0.1166,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.21,
|
757 |
+
"learning_rate": 0.00018188978827763652,
|
758 |
+
"loss": 0.1377,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.21,
|
763 |
+
"learning_rate": 0.00018158354250084527,
|
764 |
+
"loss": 0.1364,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.21,
|
769 |
+
"learning_rate": 0.00018127499143005268,
|
770 |
+
"loss": 0.1179,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.21,
|
775 |
+
"learning_rate": 0.00018096414378394028,
|
776 |
+
"loss": 0.1308,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.21,
|
781 |
+
"learning_rate": 0.00018065100834608377,
|
782 |
+
"loss": 0.1359,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.22,
|
787 |
+
"learning_rate": 0.00018033559396470454,
|
788 |
+
"loss": 0.1253,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.22,
|
793 |
+
"learning_rate": 0.00018001790955241972,
|
794 |
+
"loss": 0.1106,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.22,
|
799 |
+
"learning_rate": 0.0001796979640859904,
|
800 |
+
"loss": 0.118,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.22,
|
805 |
+
"learning_rate": 0.000179375766606068,
|
806 |
+
"loss": 0.1361,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.22,
|
811 |
+
"learning_rate": 0.0001790513262169386,
|
812 |
+
"loss": 0.1388,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.22,
|
817 |
+
"learning_rate": 0.00017872465208626598,
|
818 |
+
"loss": 0.1448,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.23,
|
823 |
+
"learning_rate": 0.00017839575344483238,
|
824 |
+
"loss": 0.111,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.23,
|
829 |
+
"learning_rate": 0.00017806463958627762,
|
830 |
+
"loss": 0.115,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.23,
|
835 |
+
"learning_rate": 0.00017773131986683672,
|
836 |
+
"loss": 0.1198,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.23,
|
841 |
+
"learning_rate": 0.00017739580370507532,
|
842 |
+
"loss": 0.1347,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.23,
|
847 |
+
"learning_rate": 0.00017705810058162353,
|
848 |
+
"loss": 0.12,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.23,
|
853 |
+
"learning_rate": 0.00017671822003890823,
|
854 |
+
"loss": 0.1258,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.24,
|
859 |
+
"learning_rate": 0.00017637617168088325,
|
860 |
+
"loss": 0.1357,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.24,
|
865 |
+
"learning_rate": 0.0001760319651727581,
|
866 |
+
"loss": 0.132,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.24,
|
871 |
+
"learning_rate": 0.0001756856102407247,
|
872 |
+
"loss": 0.1134,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.24,
|
877 |
+
"learning_rate": 0.0001753371166716828,
|
878 |
+
"loss": 0.1106,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.24,
|
883 |
+
"learning_rate": 0.00017498649431296322,
|
884 |
+
"loss": 0.1133,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.24,
|
889 |
+
"learning_rate": 0.0001746337530720497,
|
890 |
+
"loss": 0.1232,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.25,
|
895 |
+
"learning_rate": 0.00017427890291629893,
|
896 |
+
"loss": 0.1249,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.25,
|
901 |
+
"learning_rate": 0.00017392195387265887,
|
902 |
+
"loss": 0.1172,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.25,
|
907 |
+
"learning_rate": 0.00017356291602738542,
|
908 |
+
"loss": 0.1112,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.25,
|
913 |
+
"learning_rate": 0.0001732017995257575,
|
914 |
+
"loss": 0.1124,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.25,
|
919 |
+
"learning_rate": 0.00017283861457179022,
|
920 |
+
"loss": 0.124,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.25,
|
925 |
+
"learning_rate": 0.00017247337142794678,
|
926 |
+
"loss": 0.1116,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.26,
|
931 |
+
"learning_rate": 0.0001721060804148482,
|
932 |
+
"loss": 0.1294,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.26,
|
937 |
+
"learning_rate": 0.0001717367519109819,
|
938 |
+
"loss": 0.1185,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.26,
|
943 |
+
"learning_rate": 0.00017136539635240837,
|
944 |
+
"loss": 0.1383,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.26,
|
949 |
+
"learning_rate": 0.0001709920242324663,
|
950 |
+
"loss": 0.1204,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.26,
|
955 |
+
"learning_rate": 0.00017061664610147604,
|
956 |
+
"loss": 0.1293,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.26,
|
961 |
+
"learning_rate": 0.0001702392725664415,
|
962 |
+
"loss": 0.1303,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.27,
|
967 |
+
"learning_rate": 0.00016985991429075036,
|
968 |
+
"loss": 0.1189,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.27,
|
973 |
+
"learning_rate": 0.00016947858199387294,
|
974 |
+
"loss": 0.1431,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.27,
|
979 |
+
"learning_rate": 0.00016909528645105907,
|
980 |
+
"loss": 0.1174,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.27,
|
985 |
+
"learning_rate": 0.00016871003849303382,
|
986 |
+
"loss": 0.1306,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.27,
|
991 |
+
"learning_rate": 0.0001683228490056913,
|
992 |
+
"loss": 0.1086,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.27,
|
997 |
+
"learning_rate": 0.00016793372892978713,
|
998 |
+
"loss": 0.122,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.28,
|
1003 |
+
"learning_rate": 0.00016754268926062938,
|
1004 |
+
"loss": 0.1081,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.28,
|
1009 |
+
"learning_rate": 0.0001671497410477676,
|
1010 |
+
"loss": 0.1184,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.28,
|
1015 |
+
"learning_rate": 0.00016675489539468092,
|
1016 |
+
"loss": 0.1238,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.28,
|
1021 |
+
"learning_rate": 0.0001663581634584641,
|
1022 |
+
"loss": 0.1256,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.28,
|
1027 |
+
"learning_rate": 0.0001659595564495124,
|
1028 |
+
"loss": 0.1242,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.28,
|
1033 |
+
"learning_rate": 0.00016555908563120457,
|
1034 |
+
"loss": 0.1179,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.29,
|
1039 |
+
"learning_rate": 0.0001651567623195849,
|
1040 |
+
"loss": 0.1173,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.29,
|
1045 |
+
"learning_rate": 0.00016475259788304317,
|
1046 |
+
"loss": 0.1146,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.29,
|
1051 |
+
"learning_rate": 0.00016434660374199376,
|
1052 |
+
"loss": 0.1254,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.29,
|
1057 |
+
"learning_rate": 0.00016393879136855248,
|
1058 |
+
"loss": 0.1263,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.29,
|
1063 |
+
"learning_rate": 0.00016352917228621284,
|
1064 |
+
"loss": 0.1181,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.29,
|
1069 |
+
"learning_rate": 0.0001631177580695202,
|
1070 |
+
"loss": 0.1213,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.3,
|
1075 |
+
"learning_rate": 0.00016270456034374474,
|
1076 |
+
"loss": 0.1156,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.3,
|
1081 |
+
"learning_rate": 0.00016228959078455306,
|
1082 |
+
"loss": 0.1145,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.3,
|
1087 |
+
"learning_rate": 0.0001618728611176781,
|
1088 |
+
"loss": 0.1385,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.3,
|
1093 |
+
"learning_rate": 0.000161454383118588,
|
1094 |
+
"loss": 0.1228,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.3,
|
1099 |
+
"learning_rate": 0.00016103416861215313,
|
1100 |
+
"loss": 0.1175,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.3,
|
1105 |
+
"learning_rate": 0.00016061222947231225,
|
1106 |
+
"loss": 0.1328,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.31,
|
1111 |
+
"learning_rate": 0.0001601885776217367,
|
1112 |
+
"loss": 0.1223,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.31,
|
1117 |
+
"learning_rate": 0.00015976322503149373,
|
1118 |
+
"loss": 0.1244,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.31,
|
1123 |
+
"learning_rate": 0.00015933618372070805,
|
1124 |
+
"loss": 0.1356,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.31,
|
1129 |
+
"learning_rate": 0.00015890746575622231,
|
1130 |
+
"loss": 0.12,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.31,
|
1135 |
+
"learning_rate": 0.00015847708325225618,
|
1136 |
+
"loss": 0.1254,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.31,
|
1141 |
+
"learning_rate": 0.00015804504837006394,
|
1142 |
+
"loss": 0.1139,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.32,
|
1147 |
+
"learning_rate": 0.00015761137331759084,
|
1148 |
+
"loss": 0.1251,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.32,
|
1153 |
+
"learning_rate": 0.0001571760703491282,
|
1154 |
+
"loss": 0.1269,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.32,
|
1159 |
+
"learning_rate": 0.00015673915176496713,
|
1160 |
+
"loss": 0.1203,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.32,
|
1165 |
+
"learning_rate": 0.00015630062991105098,
|
1166 |
+
"loss": 0.108,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.32,
|
1171 |
+
"learning_rate": 0.00015586051717862636,
|
1172 |
+
"loss": 0.1276,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.32,
|
1177 |
+
"learning_rate": 0.0001554188260038932,
|
1178 |
+
"loss": 0.1164,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.33,
|
1183 |
+
"learning_rate": 0.00015497556886765316,
|
1184 |
+
"loss": 0.1212,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.33,
|
1189 |
+
"learning_rate": 0.0001545307582949571,
|
1190 |
+
"loss": 0.1358,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.33,
|
1195 |
+
"learning_rate": 0.00015408440685475109,
|
1196 |
+
"loss": 0.1168,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.33,
|
1201 |
+
"learning_rate": 0.0001536365271595212,
|
1202 |
+
"loss": 0.1237,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.33,
|
1207 |
+
"learning_rate": 0.00015318713186493734,
|
1208 |
+
"loss": 0.136,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.33,
|
1213 |
+
"learning_rate": 0.00015273623366949523,
|
1214 |
+
"loss": 0.1332,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.34,
|
1219 |
+
"learning_rate": 0.0001522838453141581,
|
1220 |
+
"loss": 0.1122,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.34,
|
1225 |
+
"learning_rate": 0.00015182997958199617,
|
1226 |
+
"loss": 0.118,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.34,
|
1231 |
+
"learning_rate": 0.00015137464929782586,
|
1232 |
+
"loss": 0.1277,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.34,
|
1237 |
+
"learning_rate": 0.00015091786732784716,
|
1238 |
+
"loss": 0.1117,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.34,
|
1243 |
+
"learning_rate": 0.00015045964657928006,
|
1244 |
+
"loss": 0.1025,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.34,
|
1249 |
+
"learning_rate": 0.00015000000000000001,
|
1250 |
+
"loss": 0.1251,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.35,
|
1255 |
+
"learning_rate": 0.00014953894057817188,
|
1256 |
+
"loss": 0.142,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.35,
|
1261 |
+
"learning_rate": 0.00014907648134188304,
|
1262 |
+
"loss": 0.1322,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.35,
|
1267 |
+
"learning_rate": 0.0001486126353587752,
|
1268 |
+
"loss": 0.1236,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.35,
|
1273 |
+
"learning_rate": 0.00014814741573567514,
|
1274 |
+
"loss": 0.1293,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.35,
|
1279 |
+
"learning_rate": 0.0001476808356182245,
|
1280 |
+
"loss": 0.1157,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.35,
|
1285 |
+
"learning_rate": 0.00014721290819050804,
|
1286 |
+
"loss": 0.1299,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.36,
|
1291 |
+
"learning_rate": 0.0001467436466746814,
|
1292 |
+
"loss": 0.1052,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.36,
|
1297 |
+
"learning_rate": 0.00014627306433059723,
|
1298 |
+
"loss": 0.1242,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.36,
|
1303 |
+
"learning_rate": 0.00014580117445543077,
|
1304 |
+
"loss": 0.103,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.36,
|
1309 |
+
"learning_rate": 0.00014532799038330385,
|
1310 |
+
"loss": 0.1274,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.36,
|
1315 |
+
"learning_rate": 0.00014485352548490826,
|
1316 |
+
"loss": 0.12,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.36,
|
1321 |
+
"learning_rate": 0.00014437779316712796,
|
1322 |
+
"loss": 0.1113,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.37,
|
1327 |
+
"learning_rate": 0.00014390080687266013,
|
1328 |
+
"loss": 0.1244,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.37,
|
1333 |
+
"learning_rate": 0.0001434225800796354,
|
1334 |
+
"loss": 0.1111,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.37,
|
1339 |
+
"learning_rate": 0.000142943126301237,
|
1340 |
+
"loss": 0.1007,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.37,
|
1345 |
+
"learning_rate": 0.00014246245908531882,
|
1346 |
+
"loss": 0.1175,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.37,
|
1351 |
+
"learning_rate": 0.00014198059201402287,
|
1352 |
+
"loss": 0.1285,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.37,
|
1357 |
+
"learning_rate": 0.00014149753870339507,
|
1358 |
+
"loss": 0.1523,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.38,
|
1363 |
+
"learning_rate": 0.0001410133128030009,
|
1364 |
+
"loss": 0.1212,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.38,
|
1369 |
+
"learning_rate": 0.00014052792799553934,
|
1370 |
+
"loss": 0.1053,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.38,
|
1375 |
+
"learning_rate": 0.00014004139799645668,
|
1376 |
+
"loss": 0.1356,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.38,
|
1381 |
+
"learning_rate": 0.0001395537365535585,
|
1382 |
+
"loss": 0.1316,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.38,
|
1387 |
+
"learning_rate": 0.00013906495744662157,
|
1388 |
+
"loss": 0.1316,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.38,
|
1393 |
+
"learning_rate": 0.00013857507448700423,
|
1394 |
+
"loss": 0.1209,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.39,
|
1399 |
+
"learning_rate": 0.0001380841015172563,
|
1400 |
+
"loss": 0.1191,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 0.39,
|
1405 |
+
"learning_rate": 0.00013759205241072782,
|
1406 |
+
"loss": 0.1207,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.39,
|
1411 |
+
"learning_rate": 0.00013709894107117698,
|
1412 |
+
"loss": 0.1234,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.39,
|
1417 |
+
"learning_rate": 0.00013660478143237746,
|
1418 |
+
"loss": 0.1269,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.39,
|
1423 |
+
"learning_rate": 0.00013610958745772456,
|
1424 |
+
"loss": 0.1163,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.39,
|
1429 |
+
"learning_rate": 0.00013561337313984054,
|
1430 |
+
"loss": 0.1369,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.4,
|
1435 |
+
"learning_rate": 0.0001351161525001795,
|
1436 |
+
"loss": 0.1146,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.4,
|
1441 |
+
"learning_rate": 0.00013461793958863087,
|
1442 |
+
"loss": 0.1078,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.4,
|
1447 |
+
"learning_rate": 0.00013411874848312272,
|
1448 |
+
"loss": 0.1238,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.4,
|
1453 |
+
"learning_rate": 0.0001336185932892237,
|
1454 |
+
"loss": 0.1116,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.4,
|
1459 |
+
"learning_rate": 0.00013311748813974453,
|
1460 |
+
"loss": 0.1365,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.4,
|
1465 |
+
"learning_rate": 0.0001326154471943388,
|
1466 |
+
"loss": 0.1286,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.41,
|
1471 |
+
"learning_rate": 0.00013211248463910262,
|
1472 |
+
"loss": 0.1142,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.41,
|
1477 |
+
"learning_rate": 0.000131608614686174,
|
1478 |
+
"loss": 0.1158,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.41,
|
1483 |
+
"learning_rate": 0.0001311038515733311,
|
1484 |
+
"loss": 1.5948,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.41,
|
1489 |
+
"learning_rate": 0.00013059820956358998,
|
1490 |
+
"loss": 0.1267,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.41,
|
1495 |
+
"learning_rate": 0.00013009170294480147,
|
1496 |
+
"loss": 0.1171,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.41,
|
1501 |
+
"learning_rate": 0.0001295843460292477,
|
1502 |
+
"loss": 0.128,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.42,
|
1507 |
+
"learning_rate": 0.0001290761531532374,
|
1508 |
+
"loss": 0.1455,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.42,
|
1513 |
+
"learning_rate": 0.0001285671386767009,
|
1514 |
+
"loss": 0.1207,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.42,
|
1519 |
+
"learning_rate": 0.00012805731698278442,
|
1520 |
+
"loss": 0.1266,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.42,
|
1525 |
+
"learning_rate": 0.00012754670247744354,
|
1526 |
+
"loss": 0.125,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.42,
|
1531 |
+
"learning_rate": 0.0001270353095890363,
|
1532 |
+
"loss": 0.1238,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.42,
|
1537 |
+
"learning_rate": 0.00012652315276791528,
|
1538 |
+
"loss": 0.125,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.43,
|
1543 |
+
"learning_rate": 0.0001260102464860195,
|
1544 |
+
"loss": 0.1201,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.43,
|
1549 |
+
"learning_rate": 0.00012549660523646528,
|
1550 |
+
"loss": 0.1227,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 0.43,
|
1555 |
+
"learning_rate": 0.00012498224353313684,
|
1556 |
+
"loss": 0.1205,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.43,
|
1561 |
+
"learning_rate": 0.00012446717591027624,
|
1562 |
+
"loss": 0.1327,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.43,
|
1567 |
+
"learning_rate": 0.00012395141692207243,
|
1568 |
+
"loss": 0.1193,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.43,
|
1573 |
+
"learning_rate": 0.00012343498114225038,
|
1574 |
+
"loss": 0.114,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.44,
|
1579 |
+
"learning_rate": 0.00012291788316365888,
|
1580 |
+
"loss": 0.1143,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.44,
|
1585 |
+
"learning_rate": 0.00012240013759785848,
|
1586 |
+
"loss": 0.1168,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.44,
|
1591 |
+
"learning_rate": 0.00012188175907470847,
|
1592 |
+
"loss": 0.1348,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.44,
|
1597 |
+
"learning_rate": 0.00012136276224195348,
|
1598 |
+
"loss": 0.1153,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.44,
|
1603 |
+
"learning_rate": 0.00012084316176480973,
|
1604 |
+
"loss": 0.1334,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.44,
|
1609 |
+
"learning_rate": 0.00012032297232555039,
|
1610 |
+
"loss": 0.1024,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.45,
|
1615 |
+
"learning_rate": 0.00011980220862309097,
|
1616 |
+
"loss": 0.1257,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.45,
|
1621 |
+
"learning_rate": 0.00011928088537257375,
|
1622 |
+
"loss": 0.1145,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.45,
|
1627 |
+
"learning_rate": 0.00011875901730495215,
|
1628 |
+
"loss": 0.1288,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.45,
|
1633 |
+
"learning_rate": 0.0001182366191665744,
|
1634 |
+
"loss": 0.127,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 0.45,
|
1639 |
+
"learning_rate": 0.00011771370571876681,
|
1640 |
+
"loss": 0.118,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.45,
|
1645 |
+
"learning_rate": 0.00011719029173741676,
|
1646 |
+
"loss": 0.1216,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.46,
|
1651 |
+
"learning_rate": 0.00011666639201255506,
|
1652 |
+
"loss": 0.1261,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 0.46,
|
1657 |
+
"learning_rate": 0.00011614202134793823,
|
1658 |
+
"loss": 0.1207,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.46,
|
1663 |
+
"learning_rate": 0.00011561719456062994,
|
1664 |
+
"loss": 0.1165,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.46,
|
1669 |
+
"learning_rate": 0.00011509192648058249,
|
1670 |
+
"loss": 0.1293,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.46,
|
1675 |
+
"learning_rate": 0.00011456623195021778,
|
1676 |
+
"loss": 0.1447,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.46,
|
1681 |
+
"learning_rate": 0.00011404012582400779,
|
1682 |
+
"loss": 2.074,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.47,
|
1687 |
+
"learning_rate": 0.00011351362296805485,
|
1688 |
+
"loss": 0.1065,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.47,
|
1693 |
+
"learning_rate": 0.00011298673825967183,
|
1694 |
+
"loss": 0.1089,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 0.47,
|
1699 |
+
"learning_rate": 0.00011245948658696126,
|
1700 |
+
"loss": 0.1108,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.47,
|
1705 |
+
"learning_rate": 0.00011193188284839517,
|
1706 |
+
"loss": 0.1295,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.47,
|
1711 |
+
"learning_rate": 0.00011140394195239376,
|
1712 |
+
"loss": 0.1173,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.47,
|
1717 |
+
"learning_rate": 0.00011087567881690422,
|
1718 |
+
"loss": 0.1269,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.48,
|
1723 |
+
"learning_rate": 0.00011034710836897921,
|
1724 |
+
"loss": 0.1198,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.48,
|
1729 |
+
"learning_rate": 0.00010981824554435518,
|
1730 |
+
"loss": 0.153,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.48,
|
1735 |
+
"learning_rate": 0.00010928910528703007,
|
1736 |
+
"loss": 0.1144,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 0.48,
|
1741 |
+
"learning_rate": 0.0001087597025488413,
|
1742 |
+
"loss": 0.1291,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.48,
|
1747 |
+
"learning_rate": 0.00010823005228904314,
|
1748 |
+
"loss": 0.1168,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.48,
|
1753 |
+
"learning_rate": 0.00010770016947388407,
|
1754 |
+
"loss": 0.1037,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.49,
|
1759 |
+
"learning_rate": 0.00010717006907618377,
|
1760 |
+
"loss": 0.1261,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.49,
|
1765 |
+
"learning_rate": 0.0001066397660749102,
|
1766 |
+
"loss": 0.1297,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.49,
|
1771 |
+
"learning_rate": 0.00010610927545475624,
|
1772 |
+
"loss": 0.1124,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.49,
|
1777 |
+
"learning_rate": 0.00010557861220571625,
|
1778 |
+
"loss": 0.1249,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 0.49,
|
1783 |
+
"learning_rate": 0.0001050477913226626,
|
1784 |
+
"loss": 0.1205,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.49,
|
1789 |
+
"learning_rate": 0.00010451682780492189,
|
1790 |
+
"loss": 0.1174,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.5,
|
1795 |
+
"learning_rate": 0.00010398573665585105,
|
1796 |
+
"loss": 0.1213,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.5,
|
1801 |
+
"learning_rate": 0.00010345453288241356,
|
1802 |
+
"loss": 0.1079,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.5,
|
1807 |
+
"learning_rate": 0.00010292323149475527,
|
1808 |
+
"loss": 0.1022,
|
1809 |
+
"step": 300
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.5,
|
1813 |
+
"learning_rate": 0.0001023918475057803,
|
1814 |
+
"loss": 0.1013,
|
1815 |
+
"step": 301
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.5,
|
1819 |
+
"learning_rate": 0.00010186039593072685,
|
1820 |
+
"loss": 0.1288,
|
1821 |
+
"step": 302
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 0.5,
|
1825 |
+
"learning_rate": 0.00010132889178674283,
|
1826 |
+
"loss": 0.1187,
|
1827 |
+
"step": 303
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.51,
|
1831 |
+
"learning_rate": 0.00010079735009246167,
|
1832 |
+
"loss": 0.1162,
|
1833 |
+
"step": 304
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 0.51,
|
1837 |
+
"learning_rate": 0.00010026578586757778,
|
1838 |
+
"loss": 0.1128,
|
1839 |
+
"step": 305
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.51,
|
1843 |
+
"learning_rate": 9.973421413242225e-05,
|
1844 |
+
"loss": 0.1187,
|
1845 |
+
"step": 306
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.51,
|
1849 |
+
"learning_rate": 9.920264990753837e-05,
|
1850 |
+
"loss": 0.1238,
|
1851 |
+
"step": 307
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.51,
|
1855 |
+
"learning_rate": 9.867110821325717e-05,
|
1856 |
+
"loss": 0.128,
|
1857 |
+
"step": 308
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.51,
|
1861 |
+
"learning_rate": 9.813960406927319e-05,
|
1862 |
+
"loss": 0.1277,
|
1863 |
+
"step": 309
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 0.52,
|
1867 |
+
"learning_rate": 9.760815249421973e-05,
|
1868 |
+
"loss": 0.1131,
|
1869 |
+
"step": 310
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.52,
|
1873 |
+
"learning_rate": 9.707676850524473e-05,
|
1874 |
+
"loss": 0.116,
|
1875 |
+
"step": 311
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 0.52,
|
1879 |
+
"learning_rate": 9.654546711758645e-05,
|
1880 |
+
"loss": 0.1076,
|
1881 |
+
"step": 312
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.52,
|
1885 |
+
"learning_rate": 9.601426334414898e-05,
|
1886 |
+
"loss": 0.1117,
|
1887 |
+
"step": 313
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.52,
|
1891 |
+
"learning_rate": 9.548317219507815e-05,
|
1892 |
+
"loss": 0.1418,
|
1893 |
+
"step": 314
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.52,
|
1897 |
+
"learning_rate": 9.495220867733738e-05,
|
1898 |
+
"loss": 0.1216,
|
1899 |
+
"step": 315
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.53,
|
1903 |
+
"learning_rate": 9.442138779428376e-05,
|
1904 |
+
"loss": 0.1156,
|
1905 |
+
"step": 316
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 0.53,
|
1909 |
+
"learning_rate": 9.38907245452438e-05,
|
1910 |
+
"loss": 0.1208,
|
1911 |
+
"step": 317
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.53,
|
1915 |
+
"learning_rate": 9.33602339250898e-05,
|
1916 |
+
"loss": 0.1244,
|
1917 |
+
"step": 318
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.53,
|
1921 |
+
"learning_rate": 9.282993092381625e-05,
|
1922 |
+
"loss": 0.124,
|
1923 |
+
"step": 319
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.53,
|
1927 |
+
"learning_rate": 9.229983052611597e-05,
|
1928 |
+
"loss": 0.1151,
|
1929 |
+
"step": 320
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.53,
|
1933 |
+
"learning_rate": 9.176994771095687e-05,
|
1934 |
+
"loss": 0.1076,
|
1935 |
+
"step": 321
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.54,
|
1939 |
+
"learning_rate": 9.12402974511587e-05,
|
1940 |
+
"loss": 0.1269,
|
1941 |
+
"step": 322
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.54,
|
1945 |
+
"learning_rate": 9.071089471296995e-05,
|
1946 |
+
"loss": 0.1077,
|
1947 |
+
"step": 323
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 0.54,
|
1951 |
+
"learning_rate": 9.018175445564485e-05,
|
1952 |
+
"loss": 0.1229,
|
1953 |
+
"step": 324
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.54,
|
1957 |
+
"learning_rate": 8.965289163102078e-05,
|
1958 |
+
"loss": 0.1107,
|
1959 |
+
"step": 325
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.54,
|
1963 |
+
"learning_rate": 8.912432118309582e-05,
|
1964 |
+
"loss": 0.1057,
|
1965 |
+
"step": 326
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 0.54,
|
1969 |
+
"learning_rate": 8.859605804760626e-05,
|
1970 |
+
"loss": 0.107,
|
1971 |
+
"step": 327
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.55,
|
1975 |
+
"learning_rate": 8.806811715160485e-05,
|
1976 |
+
"loss": 0.1142,
|
1977 |
+
"step": 328
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.55,
|
1981 |
+
"learning_rate": 8.754051341303875e-05,
|
1982 |
+
"loss": 0.1188,
|
1983 |
+
"step": 329
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.55,
|
1987 |
+
"learning_rate": 8.70132617403282e-05,
|
1988 |
+
"loss": 0.1011,
|
1989 |
+
"step": 330
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 0.55,
|
1993 |
+
"learning_rate": 8.648637703194516e-05,
|
1994 |
+
"loss": 0.1168,
|
1995 |
+
"step": 331
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.55,
|
1999 |
+
"learning_rate": 8.595987417599225e-05,
|
2000 |
+
"loss": 0.1239,
|
2001 |
+
"step": 332
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 0.55,
|
2005 |
+
"learning_rate": 8.543376804978224e-05,
|
2006 |
+
"loss": 0.1039,
|
2007 |
+
"step": 333
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 0.56,
|
2011 |
+
"learning_rate": 8.490807351941753e-05,
|
2012 |
+
"loss": 0.1113,
|
2013 |
+
"step": 334
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 0.56,
|
2017 |
+
"learning_rate": 8.438280543937011e-05,
|
2018 |
+
"loss": 0.1179,
|
2019 |
+
"step": 335
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.56,
|
2023 |
+
"learning_rate": 8.385797865206178e-05,
|
2024 |
+
"loss": 0.1257,
|
2025 |
+
"step": 336
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.56,
|
2029 |
+
"learning_rate": 8.333360798744496e-05,
|
2030 |
+
"loss": 0.1193,
|
2031 |
+
"step": 337
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 0.56,
|
2035 |
+
"learning_rate": 8.280970826258329e-05,
|
2036 |
+
"loss": 0.1265,
|
2037 |
+
"step": 338
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.56,
|
2041 |
+
"learning_rate": 8.228629428123319e-05,
|
2042 |
+
"loss": 0.1181,
|
2043 |
+
"step": 339
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 0.57,
|
2047 |
+
"learning_rate": 8.176338083342561e-05,
|
2048 |
+
"loss": 0.113,
|
2049 |
+
"step": 340
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 0.57,
|
2053 |
+
"learning_rate": 8.124098269504787e-05,
|
2054 |
+
"loss": 0.1159,
|
2055 |
+
"step": 341
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 0.57,
|
2059 |
+
"learning_rate": 8.07191146274263e-05,
|
2060 |
+
"loss": 0.1301,
|
2061 |
+
"step": 342
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.57,
|
2065 |
+
"learning_rate": 8.019779137690906e-05,
|
2066 |
+
"loss": 0.1203,
|
2067 |
+
"step": 343
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.57,
|
2071 |
+
"learning_rate": 7.967702767444964e-05,
|
2072 |
+
"loss": 0.1164,
|
2073 |
+
"step": 344
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 0.57,
|
2077 |
+
"learning_rate": 7.915683823519031e-05,
|
2078 |
+
"loss": 0.1198,
|
2079 |
+
"step": 345
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.58,
|
2083 |
+
"learning_rate": 7.863723775804651e-05,
|
2084 |
+
"loss": 0.1027,
|
2085 |
+
"step": 346
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 0.58,
|
2089 |
+
"learning_rate": 7.811824092529156e-05,
|
2090 |
+
"loss": 0.1379,
|
2091 |
+
"step": 347
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 0.58,
|
2095 |
+
"learning_rate": 7.759986240214155e-05,
|
2096 |
+
"loss": 0.1112,
|
2097 |
+
"step": 348
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 0.58,
|
2101 |
+
"learning_rate": 7.708211683634112e-05,
|
2102 |
+
"loss": 0.1413,
|
2103 |
+
"step": 349
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.58,
|
2107 |
+
"learning_rate": 7.656501885774964e-05,
|
2108 |
+
"loss": 0.1247,
|
2109 |
+
"step": 350
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.58,
|
2113 |
+
"learning_rate": 7.604858307792758e-05,
|
2114 |
+
"loss": 0.1168,
|
2115 |
+
"step": 351
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 0.59,
|
2119 |
+
"learning_rate": 7.553282408972382e-05,
|
2120 |
+
"loss": 0.1218,
|
2121 |
+
"step": 352
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.59,
|
2125 |
+
"learning_rate": 7.501775646686315e-05,
|
2126 |
+
"loss": 0.1177,
|
2127 |
+
"step": 353
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 0.59,
|
2131 |
+
"learning_rate": 7.450339476353474e-05,
|
2132 |
+
"loss": 0.1244,
|
2133 |
+
"step": 354
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 0.59,
|
2137 |
+
"learning_rate": 7.398975351398053e-05,
|
2138 |
+
"loss": 0.1132,
|
2139 |
+
"step": 355
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 0.59,
|
2143 |
+
"learning_rate": 7.34768472320847e-05,
|
2144 |
+
"loss": 0.1257,
|
2145 |
+
"step": 356
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.59,
|
2149 |
+
"learning_rate": 7.29646904109637e-05,
|
2150 |
+
"loss": 0.1247,
|
2151 |
+
"step": 357
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.6,
|
2155 |
+
"learning_rate": 7.245329752255647e-05,
|
2156 |
+
"loss": 0.1196,
|
2157 |
+
"step": 358
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 0.6,
|
2161 |
+
"learning_rate": 7.194268301721563e-05,
|
2162 |
+
"loss": 0.1139,
|
2163 |
+
"step": 359
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 0.6,
|
2167 |
+
"learning_rate": 7.143286132329912e-05,
|
2168 |
+
"loss": 0.129,
|
2169 |
+
"step": 360
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 0.6,
|
2173 |
+
"learning_rate": 7.092384684676262e-05,
|
2174 |
+
"loss": 0.1164,
|
2175 |
+
"step": 361
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 0.6,
|
2179 |
+
"learning_rate": 7.041565397075232e-05,
|
2180 |
+
"loss": 0.1048,
|
2181 |
+
"step": 362
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 0.6,
|
2185 |
+
"learning_rate": 6.990829705519852e-05,
|
2186 |
+
"loss": 0.1098,
|
2187 |
+
"step": 363
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.61,
|
2191 |
+
"learning_rate": 6.940179043641005e-05,
|
2192 |
+
"loss": 0.1129,
|
2193 |
+
"step": 364
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.61,
|
2197 |
+
"learning_rate": 6.889614842666892e-05,
|
2198 |
+
"loss": 0.1162,
|
2199 |
+
"step": 365
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 0.61,
|
2203 |
+
"learning_rate": 6.839138531382603e-05,
|
2204 |
+
"loss": 0.1198,
|
2205 |
+
"step": 366
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 0.61,
|
2209 |
+
"learning_rate": 6.788751536089739e-05,
|
2210 |
+
"loss": 0.1107,
|
2211 |
+
"step": 367
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 0.61,
|
2215 |
+
"learning_rate": 6.738455280566124e-05,
|
2216 |
+
"loss": 0.1177,
|
2217 |
+
"step": 368
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 0.61,
|
2221 |
+
"learning_rate": 6.68825118602555e-05,
|
2222 |
+
"loss": 0.1189,
|
2223 |
+
"step": 369
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 0.62,
|
2227 |
+
"learning_rate": 6.638140671077633e-05,
|
2228 |
+
"loss": 0.1105,
|
2229 |
+
"step": 370
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.62,
|
2233 |
+
"learning_rate": 6.58812515168773e-05,
|
2234 |
+
"loss": 0.1156,
|
2235 |
+
"step": 371
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.62,
|
2239 |
+
"learning_rate": 6.538206041136915e-05,
|
2240 |
+
"loss": 0.1306,
|
2241 |
+
"step": 372
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 0.62,
|
2245 |
+
"learning_rate": 6.488384749982053e-05,
|
2246 |
+
"loss": 0.1218,
|
2247 |
+
"step": 373
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 0.62,
|
2251 |
+
"learning_rate": 6.438662686015947e-05,
|
2252 |
+
"loss": 0.1162,
|
2253 |
+
"step": 374
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 0.62,
|
2257 |
+
"learning_rate": 6.389041254227547e-05,
|
2258 |
+
"loss": 0.0903,
|
2259 |
+
"step": 375
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 0.63,
|
2263 |
+
"learning_rate": 6.339521856762254e-05,
|
2264 |
+
"loss": 0.106,
|
2265 |
+
"step": 376
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 0.63,
|
2269 |
+
"learning_rate": 6.290105892882303e-05,
|
2270 |
+
"loss": 0.1147,
|
2271 |
+
"step": 377
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.63,
|
2275 |
+
"learning_rate": 6.240794758927221e-05,
|
2276 |
+
"loss": 0.1274,
|
2277 |
+
"step": 378
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.63,
|
2281 |
+
"learning_rate": 6.191589848274368e-05,
|
2282 |
+
"loss": 0.1024,
|
2283 |
+
"step": 379
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 0.63,
|
2287 |
+
"learning_rate": 6.142492551299576e-05,
|
2288 |
+
"loss": 0.1056,
|
2289 |
+
"step": 380
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 0.63,
|
2293 |
+
"learning_rate": 6.093504255337844e-05,
|
2294 |
+
"loss": 0.1185,
|
2295 |
+
"step": 381
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 0.64,
|
2299 |
+
"learning_rate": 6.044626344644151e-05,
|
2300 |
+
"loss": 0.1125,
|
2301 |
+
"step": 382
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 0.64,
|
2305 |
+
"learning_rate": 5.995860200354335e-05,
|
2306 |
+
"loss": 0.118,
|
2307 |
+
"step": 383
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 0.64,
|
2311 |
+
"learning_rate": 5.9472072004460665e-05,
|
2312 |
+
"loss": 0.1193,
|
2313 |
+
"step": 384
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.64,
|
2317 |
+
"learning_rate": 5.8986687196999135e-05,
|
2318 |
+
"loss": 0.1221,
|
2319 |
+
"step": 385
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.64,
|
2323 |
+
"learning_rate": 5.8502461296604935e-05,
|
2324 |
+
"loss": 0.1215,
|
2325 |
+
"step": 386
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 0.64,
|
2329 |
+
"learning_rate": 5.801940798597716e-05,
|
2330 |
+
"loss": 0.1191,
|
2331 |
+
"step": 387
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 0.65,
|
2335 |
+
"learning_rate": 5.753754091468115e-05,
|
2336 |
+
"loss": 0.1258,
|
2337 |
+
"step": 388
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 0.65,
|
2341 |
+
"learning_rate": 5.7056873698763034e-05,
|
2342 |
+
"loss": 0.1149,
|
2343 |
+
"step": 389
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 0.65,
|
2347 |
+
"learning_rate": 5.6577419920364625e-05,
|
2348 |
+
"loss": 0.1275,
|
2349 |
+
"step": 390
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 0.65,
|
2353 |
+
"learning_rate": 5.6099193127339864e-05,
|
2354 |
+
"loss": 0.1203,
|
2355 |
+
"step": 391
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.65,
|
2359 |
+
"learning_rate": 5.562220683287205e-05,
|
2360 |
+
"loss": 0.1165,
|
2361 |
+
"step": 392
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.65,
|
2365 |
+
"learning_rate": 5.5146474515091754e-05,
|
2366 |
+
"loss": 0.1248,
|
2367 |
+
"step": 393
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 0.66,
|
2371 |
+
"learning_rate": 5.467200961669619e-05,
|
2372 |
+
"loss": 0.0989,
|
2373 |
+
"step": 394
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 0.66,
|
2377 |
+
"learning_rate": 5.4198825544569234e-05,
|
2378 |
+
"loss": 0.1127,
|
2379 |
+
"step": 395
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 0.66,
|
2383 |
+
"learning_rate": 5.372693566940277e-05,
|
2384 |
+
"loss": 0.1248,
|
2385 |
+
"step": 396
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 0.66,
|
2389 |
+
"learning_rate": 5.325635332531864e-05,
|
2390 |
+
"loss": 0.1094,
|
2391 |
+
"step": 397
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 0.66,
|
2395 |
+
"learning_rate": 5.278709180949195e-05,
|
2396 |
+
"loss": 0.1194,
|
2397 |
+
"step": 398
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.66,
|
2401 |
+
"learning_rate": 5.2319164381775524e-05,
|
2402 |
+
"loss": 0.1178,
|
2403 |
+
"step": 399
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.67,
|
2407 |
+
"learning_rate": 5.1852584264324866e-05,
|
2408 |
+
"loss": 0.123,
|
2409 |
+
"step": 400
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 0.67,
|
2413 |
+
"learning_rate": 5.138736464122484e-05,
|
2414 |
+
"loss": 0.1102,
|
2415 |
+
"step": 401
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 0.67,
|
2419 |
+
"learning_rate": 5.092351865811698e-05,
|
2420 |
+
"loss": 0.1215,
|
2421 |
+
"step": 402
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 0.67,
|
2425 |
+
"learning_rate": 5.046105942182815e-05,
|
2426 |
+
"loss": 0.115,
|
2427 |
+
"step": 403
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 0.67,
|
2431 |
+
"learning_rate": 5.000000000000002e-05,
|
2432 |
+
"loss": 0.1181,
|
2433 |
+
"step": 404
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 0.67,
|
2437 |
+
"learning_rate": 4.9540353420719946e-05,
|
2438 |
+
"loss": 0.096,
|
2439 |
+
"step": 405
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 0.68,
|
2443 |
+
"learning_rate": 4.908213267215287e-05,
|
2444 |
+
"loss": 0.1176,
|
2445 |
+
"step": 406
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.68,
|
2449 |
+
"learning_rate": 4.8625350702174166e-05,
|
2450 |
+
"loss": 0.1229,
|
2451 |
+
"step": 407
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 0.68,
|
2455 |
+
"learning_rate": 4.817002041800388e-05,
|
2456 |
+
"loss": 0.1177,
|
2457 |
+
"step": 408
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 0.68,
|
2461 |
+
"learning_rate": 4.7716154685841944e-05,
|
2462 |
+
"loss": 0.1124,
|
2463 |
+
"step": 409
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 0.68,
|
2467 |
+
"learning_rate": 4.726376633050479e-05,
|
2468 |
+
"loss": 0.1325,
|
2469 |
+
"step": 410
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 0.68,
|
2473 |
+
"learning_rate": 4.68128681350627e-05,
|
2474 |
+
"loss": 0.1072,
|
2475 |
+
"step": 411
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 0.69,
|
2479 |
+
"learning_rate": 4.636347284047877e-05,
|
2480 |
+
"loss": 0.1168,
|
2481 |
+
"step": 412
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 0.69,
|
2485 |
+
"learning_rate": 4.5915593145248924e-05,
|
2486 |
+
"loss": 0.105,
|
2487 |
+
"step": 413
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.69,
|
2491 |
+
"learning_rate": 4.546924170504292e-05,
|
2492 |
+
"loss": 0.1121,
|
2493 |
+
"step": 414
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 0.69,
|
2497 |
+
"learning_rate": 4.502443113234688e-05,
|
2498 |
+
"loss": 0.1075,
|
2499 |
+
"step": 415
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 0.69,
|
2503 |
+
"learning_rate": 4.4581173996106815e-05,
|
2504 |
+
"loss": 0.1266,
|
2505 |
+
"step": 416
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 0.69,
|
2509 |
+
"learning_rate": 4.413948282137367e-05,
|
2510 |
+
"loss": 0.1161,
|
2511 |
+
"step": 417
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 0.7,
|
2515 |
+
"learning_rate": 4.3699370088949066e-05,
|
2516 |
+
"loss": 0.114,
|
2517 |
+
"step": 418
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 0.7,
|
2521 |
+
"learning_rate": 4.326084823503287e-05,
|
2522 |
+
"loss": 0.1145,
|
2523 |
+
"step": 419
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 0.7,
|
2527 |
+
"learning_rate": 4.282392965087182e-05,
|
2528 |
+
"loss": 0.1174,
|
2529 |
+
"step": 420
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.7,
|
2533 |
+
"learning_rate": 4.2388626682409194e-05,
|
2534 |
+
"loss": 0.1368,
|
2535 |
+
"step": 421
|
2536 |
+
},
|
2537 |
+
{
|
2538 |
+
"epoch": 0.7,
|
2539 |
+
"learning_rate": 4.1954951629936065e-05,
|
2540 |
+
"loss": 0.1133,
|
2541 |
+
"step": 422
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 0.7,
|
2545 |
+
"learning_rate": 4.152291674774383e-05,
|
2546 |
+
"loss": 0.1073,
|
2547 |
+
"step": 423
|
2548 |
+
},
|
2549 |
+
{
|
2550 |
+
"epoch": 0.71,
|
2551 |
+
"learning_rate": 4.109253424377772e-05,
|
2552 |
+
"loss": 0.0974,
|
2553 |
+
"step": 424
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 0.71,
|
2557 |
+
"learning_rate": 4.0663816279292024e-05,
|
2558 |
+
"loss": 0.1427,
|
2559 |
+
"step": 425
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 0.71,
|
2563 |
+
"learning_rate": 4.02367749685063e-05,
|
2564 |
+
"loss": 0.1349,
|
2565 |
+
"step": 426
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 0.71,
|
2569 |
+
"learning_rate": 3.981142237826332e-05,
|
2570 |
+
"loss": 0.118,
|
2571 |
+
"step": 427
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.71,
|
2575 |
+
"learning_rate": 3.93877705276878e-05,
|
2576 |
+
"loss": 0.1023,
|
2577 |
+
"step": 428
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 0.71,
|
2581 |
+
"learning_rate": 3.896583138784688e-05,
|
2582 |
+
"loss": 0.0998,
|
2583 |
+
"step": 429
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 0.72,
|
2587 |
+
"learning_rate": 3.854561688141205e-05,
|
2588 |
+
"loss": 0.112,
|
2589 |
+
"step": 430
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 0.72,
|
2593 |
+
"learning_rate": 3.812713888232193e-05,
|
2594 |
+
"loss": 0.12,
|
2595 |
+
"step": 431
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 0.72,
|
2599 |
+
"learning_rate": 3.7710409215446986e-05,
|
2600 |
+
"loss": 0.1135,
|
2601 |
+
"step": 432
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 0.72,
|
2605 |
+
"learning_rate": 3.729543965625526e-05,
|
2606 |
+
"loss": 0.1196,
|
2607 |
+
"step": 433
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 0.72,
|
2611 |
+
"learning_rate": 3.6882241930479824e-05,
|
2612 |
+
"loss": 0.1124,
|
2613 |
+
"step": 434
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.72,
|
2617 |
+
"learning_rate": 3.6470827713787194e-05,
|
2618 |
+
"loss": 0.1165,
|
2619 |
+
"step": 435
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 0.73,
|
2623 |
+
"learning_rate": 3.606120863144753e-05,
|
2624 |
+
"loss": 0.1031,
|
2625 |
+
"step": 436
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 0.73,
|
2629 |
+
"learning_rate": 3.5653396258006265e-05,
|
2630 |
+
"loss": 0.1115,
|
2631 |
+
"step": 437
|
2632 |
+
},
|
2633 |
+
{
|
2634 |
+
"epoch": 0.73,
|
2635 |
+
"learning_rate": 3.524740211695683e-05,
|
2636 |
+
"loss": 0.1261,
|
2637 |
+
"step": 438
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 0.73,
|
2641 |
+
"learning_rate": 3.4843237680415156e-05,
|
2642 |
+
"loss": 0.1213,
|
2643 |
+
"step": 439
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 0.73,
|
2647 |
+
"learning_rate": 3.444091436879545e-05,
|
2648 |
+
"loss": 0.1236,
|
2649 |
+
"step": 440
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 0.73,
|
2653 |
+
"learning_rate": 3.4040443550487645e-05,
|
2654 |
+
"loss": 0.1157,
|
2655 |
+
"step": 441
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.74,
|
2659 |
+
"learning_rate": 3.364183654153592e-05,
|
2660 |
+
"loss": 0.1072,
|
2661 |
+
"step": 442
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 0.74,
|
2665 |
+
"learning_rate": 3.32451046053191e-05,
|
2666 |
+
"loss": 0.0938,
|
2667 |
+
"step": 443
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 0.74,
|
2671 |
+
"learning_rate": 3.285025895223244e-05,
|
2672 |
+
"loss": 0.1236,
|
2673 |
+
"step": 444
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 0.74,
|
2677 |
+
"learning_rate": 3.245731073937068e-05,
|
2678 |
+
"loss": 0.1369,
|
2679 |
+
"step": 445
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 0.74,
|
2683 |
+
"learning_rate": 3.2066271070212874e-05,
|
2684 |
+
"loss": 0.1168,
|
2685 |
+
"step": 446
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 0.74,
|
2689 |
+
"learning_rate": 3.167715099430873e-05,
|
2690 |
+
"loss": 0.0973,
|
2691 |
+
"step": 447
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.75,
|
2695 |
+
"learning_rate": 3.1289961506966214e-05,
|
2696 |
+
"loss": 0.0985,
|
2697 |
+
"step": 448
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.75,
|
2701 |
+
"learning_rate": 3.0904713548940936e-05,
|
2702 |
+
"loss": 0.1168,
|
2703 |
+
"step": 449
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 0.75,
|
2707 |
+
"learning_rate": 3.052141800612709e-05,
|
2708 |
+
"loss": 0.1115,
|
2709 |
+
"step": 450
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 0.75,
|
2713 |
+
"learning_rate": 3.0140085709249667e-05,
|
2714 |
+
"loss": 0.1155,
|
2715 |
+
"step": 451
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 0.75,
|
2719 |
+
"learning_rate": 2.9760727433558522e-05,
|
2720 |
+
"loss": 0.1223,
|
2721 |
+
"step": 452
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 0.75,
|
2725 |
+
"learning_rate": 2.938335389852397e-05,
|
2726 |
+
"loss": 0.1252,
|
2727 |
+
"step": 453
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 0.76,
|
2731 |
+
"learning_rate": 2.9007975767533714e-05,
|
2732 |
+
"loss": 0.1272,
|
2733 |
+
"step": 454
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.76,
|
2737 |
+
"learning_rate": 2.863460364759163e-05,
|
2738 |
+
"loss": 0.114,
|
2739 |
+
"step": 455
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.76,
|
2743 |
+
"learning_rate": 2.8263248089018113e-05,
|
2744 |
+
"loss": 0.0958,
|
2745 |
+
"step": 456
|
2746 |
+
},
|
2747 |
+
{
|
2748 |
+
"epoch": 0.76,
|
2749 |
+
"learning_rate": 2.789391958515183e-05,
|
2750 |
+
"loss": 0.1294,
|
2751 |
+
"step": 457
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 0.76,
|
2755 |
+
"learning_rate": 2.7526628572053227e-05,
|
2756 |
+
"loss": 0.1126,
|
2757 |
+
"step": 458
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 0.76,
|
2761 |
+
"learning_rate": 2.7161385428209774e-05,
|
2762 |
+
"loss": 0.11,
|
2763 |
+
"step": 459
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 0.77,
|
2767 |
+
"learning_rate": 2.679820047424253e-05,
|
2768 |
+
"loss": 0.1189,
|
2769 |
+
"step": 460
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 0.77,
|
2773 |
+
"learning_rate": 2.6437083972614572e-05,
|
2774 |
+
"loss": 0.1115,
|
2775 |
+
"step": 461
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.77,
|
2779 |
+
"learning_rate": 2.6078046127341137e-05,
|
2780 |
+
"loss": 0.1205,
|
2781 |
+
"step": 462
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.77,
|
2785 |
+
"learning_rate": 2.5721097083701084e-05,
|
2786 |
+
"loss": 0.096,
|
2787 |
+
"step": 463
|
2788 |
+
},
|
2789 |
+
{
|
2790 |
+
"epoch": 0.77,
|
2791 |
+
"learning_rate": 2.5366246927950286e-05,
|
2792 |
+
"loss": 0.1064,
|
2793 |
+
"step": 464
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 0.77,
|
2797 |
+
"learning_rate": 2.5013505687036786e-05,
|
2798 |
+
"loss": 0.1279,
|
2799 |
+
"step": 465
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 0.78,
|
2803 |
+
"learning_rate": 2.4662883328317222e-05,
|
2804 |
+
"loss": 0.1124,
|
2805 |
+
"step": 466
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 0.78,
|
2809 |
+
"learning_rate": 2.4314389759275335e-05,
|
2810 |
+
"loss": 0.1052,
|
2811 |
+
"step": 467
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 0.78,
|
2815 |
+
"learning_rate": 2.3968034827241925e-05,
|
2816 |
+
"loss": 0.1103,
|
2817 |
+
"step": 468
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.78,
|
2821 |
+
"learning_rate": 2.3623828319116748e-05,
|
2822 |
+
"loss": 0.1075,
|
2823 |
+
"step": 469
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.78,
|
2827 |
+
"learning_rate": 2.3281779961091775e-05,
|
2828 |
+
"loss": 0.0996,
|
2829 |
+
"step": 470
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 0.78,
|
2833 |
+
"learning_rate": 2.2941899418376466e-05,
|
2834 |
+
"loss": 0.0935,
|
2835 |
+
"step": 471
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 0.79,
|
2839 |
+
"learning_rate": 2.2604196294924694e-05,
|
2840 |
+
"loss": 0.1096,
|
2841 |
+
"step": 472
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 0.79,
|
2845 |
+
"learning_rate": 2.2268680133163277e-05,
|
2846 |
+
"loss": 0.1101,
|
2847 |
+
"step": 473
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 0.79,
|
2851 |
+
"learning_rate": 2.1935360413722395e-05,
|
2852 |
+
"loss": 0.1223,
|
2853 |
+
"step": 474
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 0.79,
|
2857 |
+
"learning_rate": 2.1604246555167638e-05,
|
2858 |
+
"loss": 0.1165,
|
2859 |
+
"step": 475
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 0.79,
|
2863 |
+
"learning_rate": 2.1275347913734022e-05,
|
2864 |
+
"loss": 0.1182,
|
2865 |
+
"step": 476
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.79,
|
2869 |
+
"learning_rate": 2.0948673783061422e-05,
|
2870 |
+
"loss": 0.1039,
|
2871 |
+
"step": 477
|
2872 |
+
},
|
2873 |
+
{
|
2874 |
+
"epoch": 0.8,
|
2875 |
+
"learning_rate": 2.0624233393932024e-05,
|
2876 |
+
"loss": 0.1117,
|
2877 |
+
"step": 478
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 0.8,
|
2881 |
+
"learning_rate": 2.03020359140096e-05,
|
2882 |
+
"loss": 0.1178,
|
2883 |
+
"step": 479
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 0.8,
|
2887 |
+
"learning_rate": 1.9982090447580303e-05,
|
2888 |
+
"loss": 0.1253,
|
2889 |
+
"step": 480
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 0.8,
|
2893 |
+
"learning_rate": 1.966440603529549e-05,
|
2894 |
+
"loss": 0.1079,
|
2895 |
+
"step": 481
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"epoch": 0.8,
|
2899 |
+
"learning_rate": 1.9348991653916228e-05,
|
2900 |
+
"loss": 0.101,
|
2901 |
+
"step": 482
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.8,
|
2905 |
+
"learning_rate": 1.9035856216059722e-05,
|
2906 |
+
"loss": 0.1012,
|
2907 |
+
"step": 483
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.81,
|
2911 |
+
"learning_rate": 1.8725008569947365e-05,
|
2912 |
+
"loss": 0.121,
|
2913 |
+
"step": 484
|
2914 |
+
},
|
2915 |
+
{
|
2916 |
+
"epoch": 0.81,
|
2917 |
+
"learning_rate": 1.8416457499154728e-05,
|
2918 |
+
"loss": 0.1232,
|
2919 |
+
"step": 485
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 0.81,
|
2923 |
+
"learning_rate": 1.811021172236348e-05,
|
2924 |
+
"loss": 0.1058,
|
2925 |
+
"step": 486
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 0.81,
|
2929 |
+
"learning_rate": 1.7806279893114875e-05,
|
2930 |
+
"loss": 0.1078,
|
2931 |
+
"step": 487
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 0.81,
|
2935 |
+
"learning_rate": 1.750467059956531e-05,
|
2936 |
+
"loss": 0.1188,
|
2937 |
+
"step": 488
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 0.81,
|
2941 |
+
"learning_rate": 1.7205392364243623e-05,
|
2942 |
+
"loss": 0.118,
|
2943 |
+
"step": 489
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.82,
|
2947 |
+
"learning_rate": 1.690845364381034e-05,
|
2948 |
+
"loss": 0.108,
|
2949 |
+
"step": 490
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.82,
|
2953 |
+
"learning_rate": 1.6613862828818628e-05,
|
2954 |
+
"loss": 0.1035,
|
2955 |
+
"step": 491
|
2956 |
+
},
|
2957 |
+
{
|
2958 |
+
"epoch": 0.82,
|
2959 |
+
"learning_rate": 1.6321628243477194e-05,
|
2960 |
+
"loss": 0.1274,
|
2961 |
+
"step": 492
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 0.82,
|
2965 |
+
"learning_rate": 1.603175814541522e-05,
|
2966 |
+
"loss": 0.1184,
|
2967 |
+
"step": 493
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 0.82,
|
2971 |
+
"learning_rate": 1.5744260725448844e-05,
|
2972 |
+
"loss": 0.1038,
|
2973 |
+
"step": 494
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"epoch": 0.82,
|
2977 |
+
"learning_rate": 1.5459144107349787e-05,
|
2978 |
+
"loss": 0.1059,
|
2979 |
+
"step": 495
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 0.83,
|
2983 |
+
"learning_rate": 1.5176416347615885e-05,
|
2984 |
+
"loss": 0.1079,
|
2985 |
+
"step": 496
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.83,
|
2989 |
+
"learning_rate": 1.4896085435243279e-05,
|
2990 |
+
"loss": 0.1169,
|
2991 |
+
"step": 497
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.83,
|
2995 |
+
"learning_rate": 1.4618159291500778e-05,
|
2996 |
+
"loss": 0.1092,
|
2997 |
+
"step": 498
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 0.83,
|
3001 |
+
"learning_rate": 1.4342645769705977e-05,
|
3002 |
+
"loss": 0.1362,
|
3003 |
+
"step": 499
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 0.83,
|
3007 |
+
"learning_rate": 1.406955265500346e-05,
|
3008 |
+
"loss": 0.1393,
|
3009 |
+
"step": 500
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 0.83,
|
3013 |
+
"learning_rate": 1.3798887664144633e-05,
|
3014 |
+
"loss": 0.1252,
|
3015 |
+
"step": 501
|
3016 |
+
},
|
3017 |
+
{
|
3018 |
+
"epoch": 0.84,
|
3019 |
+
"learning_rate": 1.3530658445269783e-05,
|
3020 |
+
"loss": 0.1019,
|
3021 |
+
"step": 502
|
3022 |
+
},
|
3023 |
+
{
|
3024 |
+
"epoch": 0.84,
|
3025 |
+
"learning_rate": 1.3264872577692022e-05,
|
3026 |
+
"loss": 0.1204,
|
3027 |
+
"step": 503
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 0.84,
|
3031 |
+
"learning_rate": 1.3001537571682965e-05,
|
3032 |
+
"loss": 0.1303,
|
3033 |
+
"step": 504
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.84,
|
3037 |
+
"learning_rate": 1.2740660868260633e-05,
|
3038 |
+
"loss": 0.1178,
|
3039 |
+
"step": 505
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 0.84,
|
3043 |
+
"learning_rate": 1.2482249838979142e-05,
|
3044 |
+
"loss": 0.1066,
|
3045 |
+
"step": 506
|
3046 |
+
},
|
3047 |
+
{
|
3048 |
+
"epoch": 0.84,
|
3049 |
+
"learning_rate": 1.2226311785720468e-05,
|
3050 |
+
"loss": 0.1184,
|
3051 |
+
"step": 507
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"epoch": 0.85,
|
3055 |
+
"learning_rate": 1.1972853940488015e-05,
|
3056 |
+
"loss": 0.1062,
|
3057 |
+
"step": 508
|
3058 |
+
},
|
3059 |
+
{
|
3060 |
+
"epoch": 0.85,
|
3061 |
+
"learning_rate": 1.1721883465202332e-05,
|
3062 |
+
"loss": 0.1105,
|
3063 |
+
"step": 509
|
3064 |
+
},
|
3065 |
+
{
|
3066 |
+
"epoch": 0.85,
|
3067 |
+
"learning_rate": 1.1473407451498753e-05,
|
3068 |
+
"loss": 0.1232,
|
3069 |
+
"step": 510
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 0.85,
|
3073 |
+
"learning_rate": 1.122743292052697e-05,
|
3074 |
+
"loss": 0.1225,
|
3075 |
+
"step": 511
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.85,
|
3079 |
+
"learning_rate": 1.0983966822752623e-05,
|
3080 |
+
"loss": 0.1021,
|
3081 |
+
"step": 512
|
3082 |
+
},
|
3083 |
+
{
|
3084 |
+
"epoch": 0.85,
|
3085 |
+
"learning_rate": 1.0743016037760945e-05,
|
3086 |
+
"loss": 0.1062,
|
3087 |
+
"step": 513
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 0.86,
|
3091 |
+
"learning_rate": 1.0504587374062391e-05,
|
3092 |
+
"loss": 0.116,
|
3093 |
+
"step": 514
|
3094 |
+
},
|
3095 |
+
{
|
3096 |
+
"epoch": 0.86,
|
3097 |
+
"learning_rate": 1.026868756890016e-05,
|
3098 |
+
"loss": 0.1203,
|
3099 |
+
"step": 515
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 0.86,
|
3103 |
+
"learning_rate": 1.003532328805986e-05,
|
3104 |
+
"loss": 0.117,
|
3105 |
+
"step": 516
|
3106 |
+
},
|
3107 |
+
{
|
3108 |
+
"epoch": 0.86,
|
3109 |
+
"learning_rate": 9.804501125681243e-06,
|
3110 |
+
"loss": 0.1043,
|
3111 |
+
"step": 517
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 0.86,
|
3115 |
+
"learning_rate": 9.57622760407173e-06,
|
3116 |
+
"loss": 0.1162,
|
3117 |
+
"step": 518
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.86,
|
3121 |
+
"learning_rate": 9.350509173522193e-06,
|
3122 |
+
"loss": 0.1154,
|
3123 |
+
"step": 519
|
3124 |
+
},
|
3125 |
+
{
|
3126 |
+
"epoch": 0.87,
|
3127 |
+
"learning_rate": 9.127352212124662e-06,
|
3128 |
+
"loss": 0.1088,
|
3129 |
+
"step": 520
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 0.87,
|
3133 |
+
"learning_rate": 8.90676302559219e-06,
|
3134 |
+
"loss": 0.1187,
|
3135 |
+
"step": 521
|
3136 |
+
},
|
3137 |
+
{
|
3138 |
+
"epoch": 0.87,
|
3139 |
+
"learning_rate": 8.688747847080514e-06,
|
3140 |
+
"loss": 0.1084,
|
3141 |
+
"step": 522
|
3142 |
+
},
|
3143 |
+
{
|
3144 |
+
"epoch": 0.87,
|
3145 |
+
"learning_rate": 8.473312837012026e-06,
|
3146 |
+
"loss": 0.1071,
|
3147 |
+
"step": 523
|
3148 |
+
},
|
3149 |
+
{
|
3150 |
+
"epoch": 0.87,
|
3151 |
+
"learning_rate": 8.260464082901732e-06,
|
3152 |
+
"loss": 0.1241,
|
3153 |
+
"step": 524
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 0.87,
|
3157 |
+
"learning_rate": 8.050207599185134e-06,
|
3158 |
+
"loss": 0.1227,
|
3159 |
+
"step": 525
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.88,
|
3163 |
+
"learning_rate": 7.842549327048365e-06,
|
3164 |
+
"loss": 0.1189,
|
3165 |
+
"step": 526
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 0.88,
|
3169 |
+
"learning_rate": 7.637495134260242e-06,
|
3170 |
+
"loss": 0.1025,
|
3171 |
+
"step": 527
|
3172 |
+
},
|
3173 |
+
{
|
3174 |
+
"epoch": 0.88,
|
3175 |
+
"learning_rate": 7.435050815006561e-06,
|
3176 |
+
"loss": 0.1024,
|
3177 |
+
"step": 528
|
3178 |
+
},
|
3179 |
+
{
|
3180 |
+
"epoch": 0.88,
|
3181 |
+
"learning_rate": 7.235222089726279e-06,
|
3182 |
+
"loss": 0.0958,
|
3183 |
+
"step": 529
|
3184 |
+
},
|
3185 |
+
{
|
3186 |
+
"epoch": 0.88,
|
3187 |
+
"learning_rate": 7.038014604949883e-06,
|
3188 |
+
"loss": 0.1155,
|
3189 |
+
"step": 530
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 0.88,
|
3193 |
+
"learning_rate": 6.843433933139909e-06,
|
3194 |
+
"loss": 0.1107,
|
3195 |
+
"step": 531
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 0.89,
|
3199 |
+
"learning_rate": 6.651485572533378e-06,
|
3200 |
+
"loss": 0.1109,
|
3201 |
+
"step": 532
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.89,
|
3205 |
+
"learning_rate": 6.46217494698651e-06,
|
3206 |
+
"loss": 0.1211,
|
3207 |
+
"step": 533
|
3208 |
+
},
|
3209 |
+
{
|
3210 |
+
"epoch": 0.89,
|
3211 |
+
"learning_rate": 6.275507405821435e-06,
|
3212 |
+
"loss": 0.121,
|
3213 |
+
"step": 534
|
3214 |
+
},
|
3215 |
+
{
|
3216 |
+
"epoch": 0.89,
|
3217 |
+
"learning_rate": 6.091488223675057e-06,
|
3218 |
+
"loss": 0.114,
|
3219 |
+
"step": 535
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 0.89,
|
3223 |
+
"learning_rate": 5.910122600349965e-06,
|
3224 |
+
"loss": 0.1285,
|
3225 |
+
"step": 536
|
3226 |
+
},
|
3227 |
+
{
|
3228 |
+
"epoch": 0.89,
|
3229 |
+
"learning_rate": 5.7314156606675496e-06,
|
3230 |
+
"loss": 0.0938,
|
3231 |
+
"step": 537
|
3232 |
+
},
|
3233 |
+
{
|
3234 |
+
"epoch": 0.9,
|
3235 |
+
"learning_rate": 5.5553724543231825e-06,
|
3236 |
+
"loss": 0.1107,
|
3237 |
+
"step": 538
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 0.9,
|
3241 |
+
"learning_rate": 5.381997955743501e-06,
|
3242 |
+
"loss": 0.1255,
|
3243 |
+
"step": 539
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 0.9,
|
3247 |
+
"learning_rate": 5.2112970639458745e-06,
|
3248 |
+
"loss": 0.1278,
|
3249 |
+
"step": 540
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 0.9,
|
3253 |
+
"learning_rate": 5.043274602399939e-06,
|
3254 |
+
"loss": 0.1134,
|
3255 |
+
"step": 541
|
3256 |
+
},
|
3257 |
+
{
|
3258 |
+
"epoch": 0.9,
|
3259 |
+
"learning_rate": 4.87793531889138e-06,
|
3260 |
+
"loss": 0.1072,
|
3261 |
+
"step": 542
|
3262 |
+
},
|
3263 |
+
{
|
3264 |
+
"epoch": 0.9,
|
3265 |
+
"learning_rate": 4.715283885387678e-06,
|
3266 |
+
"loss": 0.1115,
|
3267 |
+
"step": 543
|
3268 |
+
},
|
3269 |
+
{
|
3270 |
+
"epoch": 0.91,
|
3271 |
+
"learning_rate": 4.555324897906132e-06,
|
3272 |
+
"loss": 0.1012,
|
3273 |
+
"step": 544
|
3274 |
+
},
|
3275 |
+
{
|
3276 |
+
"epoch": 0.91,
|
3277 |
+
"learning_rate": 4.398062876384046e-06,
|
3278 |
+
"loss": 0.1145,
|
3279 |
+
"step": 545
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 0.91,
|
3283 |
+
"learning_rate": 4.2435022645509025e-06,
|
3284 |
+
"loss": 0.1079,
|
3285 |
+
"step": 546
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 0.91,
|
3289 |
+
"learning_rate": 4.091647429802869e-06,
|
3290 |
+
"loss": 0.1133,
|
3291 |
+
"step": 547
|
3292 |
+
},
|
3293 |
+
{
|
3294 |
+
"epoch": 0.91,
|
3295 |
+
"learning_rate": 3.942502663079395e-06,
|
3296 |
+
"loss": 0.1078,
|
3297 |
+
"step": 548
|
3298 |
+
},
|
3299 |
+
{
|
3300 |
+
"epoch": 0.91,
|
3301 |
+
"learning_rate": 3.796072178741916e-06,
|
3302 |
+
"loss": 0.1113,
|
3303 |
+
"step": 549
|
3304 |
+
},
|
3305 |
+
{
|
3306 |
+
"epoch": 0.92,
|
3307 |
+
"learning_rate": 3.6523601144548003e-06,
|
3308 |
+
"loss": 3.1026,
|
3309 |
+
"step": 550
|
3310 |
+
},
|
3311 |
+
{
|
3312 |
+
"epoch": 0.92,
|
3313 |
+
"learning_rate": 3.5113705310684363e-06,
|
3314 |
+
"loss": 0.1238,
|
3315 |
+
"step": 551
|
3316 |
+
},
|
3317 |
+
{
|
3318 |
+
"epoch": 0.92,
|
3319 |
+
"learning_rate": 3.3731074125044726e-06,
|
3320 |
+
"loss": 0.1266,
|
3321 |
+
"step": 552
|
3322 |
+
},
|
3323 |
+
{
|
3324 |
+
"epoch": 0.92,
|
3325 |
+
"learning_rate": 3.2375746656432284e-06,
|
3326 |
+
"loss": 0.1344,
|
3327 |
+
"step": 553
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 0.92,
|
3331 |
+
"learning_rate": 3.1047761202133597e-06,
|
3332 |
+
"loss": 0.1211,
|
3333 |
+
"step": 554
|
3334 |
+
},
|
3335 |
+
{
|
3336 |
+
"epoch": 0.92,
|
3337 |
+
"learning_rate": 2.974715528683547e-06,
|
3338 |
+
"loss": 0.1223,
|
3339 |
+
"step": 555
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 0.93,
|
3343 |
+
"learning_rate": 2.8473965661565347e-06,
|
3344 |
+
"loss": 0.1148,
|
3345 |
+
"step": 556
|
3346 |
+
},
|
3347 |
+
{
|
3348 |
+
"epoch": 0.93,
|
3349 |
+
"learning_rate": 2.7228228302653034e-06,
|
3350 |
+
"loss": 0.1238,
|
3351 |
+
"step": 557
|
3352 |
+
},
|
3353 |
+
{
|
3354 |
+
"epoch": 0.93,
|
3355 |
+
"learning_rate": 2.600997841071329e-06,
|
3356 |
+
"loss": 0.0977,
|
3357 |
+
"step": 558
|
3358 |
+
},
|
3359 |
+
{
|
3360 |
+
"epoch": 0.93,
|
3361 |
+
"learning_rate": 2.4819250409651607e-06,
|
3362 |
+
"loss": 0.1203,
|
3363 |
+
"step": 559
|
3364 |
+
},
|
3365 |
+
{
|
3366 |
+
"epoch": 0.93,
|
3367 |
+
"learning_rate": 2.3656077945691803e-06,
|
3368 |
+
"loss": 0.1029,
|
3369 |
+
"step": 560
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 0.93,
|
3373 |
+
"learning_rate": 2.2520493886424743e-06,
|
3374 |
+
"loss": 0.1305,
|
3375 |
+
"step": 561
|
3376 |
+
},
|
3377 |
+
{
|
3378 |
+
"epoch": 0.94,
|
3379 |
+
"learning_rate": 2.1412530319879887e-06,
|
3380 |
+
"loss": 0.1208,
|
3381 |
+
"step": 562
|
3382 |
+
},
|
3383 |
+
{
|
3384 |
+
"epoch": 0.94,
|
3385 |
+
"learning_rate": 2.0332218553618885e-06,
|
3386 |
+
"loss": 0.1234,
|
3387 |
+
"step": 563
|
3388 |
+
},
|
3389 |
+
{
|
3390 |
+
"epoch": 0.94,
|
3391 |
+
"learning_rate": 1.9279589113850084e-06,
|
3392 |
+
"loss": 0.1387,
|
3393 |
+
"step": 564
|
3394 |
+
},
|
3395 |
+
{
|
3396 |
+
"epoch": 0.94,
|
3397 |
+
"learning_rate": 1.825467174456652e-06,
|
3398 |
+
"loss": 0.1313,
|
3399 |
+
"step": 565
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 0.94,
|
3403 |
+
"learning_rate": 1.725749540670596e-06,
|
3404 |
+
"loss": 0.1135,
|
3405 |
+
"step": 566
|
3406 |
+
},
|
3407 |
+
{
|
3408 |
+
"epoch": 0.94,
|
3409 |
+
"learning_rate": 1.6288088277331304e-06,
|
3410 |
+
"loss": 0.101,
|
3411 |
+
"step": 567
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 0.95,
|
3415 |
+
"learning_rate": 1.5346477748835354e-06,
|
3416 |
+
"loss": 0.1131,
|
3417 |
+
"step": 568
|
3418 |
+
},
|
3419 |
+
{
|
3420 |
+
"epoch": 0.95,
|
3421 |
+
"learning_rate": 1.4432690428166528e-06,
|
3422 |
+
"loss": 0.1117,
|
3423 |
+
"step": 569
|
3424 |
+
},
|
3425 |
+
{
|
3426 |
+
"epoch": 0.95,
|
3427 |
+
"learning_rate": 1.3546752136076923e-06,
|
3428 |
+
"loss": 0.1107,
|
3429 |
+
"step": 570
|
3430 |
+
},
|
3431 |
+
{
|
3432 |
+
"epoch": 0.95,
|
3433 |
+
"learning_rate": 1.268868790639277e-06,
|
3434 |
+
"loss": 0.115,
|
3435 |
+
"step": 571
|
3436 |
+
},
|
3437 |
+
{
|
3438 |
+
"epoch": 0.95,
|
3439 |
+
"learning_rate": 1.1858521985307125e-06,
|
3440 |
+
"loss": 0.1163,
|
3441 |
+
"step": 572
|
3442 |
+
},
|
3443 |
+
{
|
3444 |
+
"epoch": 0.95,
|
3445 |
+
"learning_rate": 1.105627783069485e-06,
|
3446 |
+
"loss": 0.1131,
|
3447 |
+
"step": 573
|
3448 |
+
},
|
3449 |
+
{
|
3450 |
+
"epoch": 0.96,
|
3451 |
+
"learning_rate": 1.0281978111449375e-06,
|
3452 |
+
"loss": 0.1085,
|
3453 |
+
"step": 574
|
3454 |
+
},
|
3455 |
+
{
|
3456 |
+
"epoch": 0.96,
|
3457 |
+
"learning_rate": 9.535644706842317e-07,
|
3458 |
+
"loss": 0.1257,
|
3459 |
+
"step": 575
|
3460 |
+
},
|
3461 |
+
{
|
3462 |
+
"epoch": 0.96,
|
3463 |
+
"learning_rate": 8.817298705905641e-07,
|
3464 |
+
"loss": 0.1188,
|
3465 |
+
"step": 576
|
3466 |
+
},
|
3467 |
+
{
|
3468 |
+
"epoch": 0.96,
|
3469 |
+
"learning_rate": 8.126960406835249e-07,
|
3470 |
+
"loss": 0.1101,
|
3471 |
+
"step": 577
|
3472 |
+
},
|
3473 |
+
{
|
3474 |
+
"epoch": 0.96,
|
3475 |
+
"learning_rate": 7.464649316417438e-07,
|
3476 |
+
"loss": 0.1075,
|
3477 |
+
"step": 578
|
3478 |
+
},
|
3479 |
+
{
|
3480 |
+
"epoch": 0.96,
|
3481 |
+
"learning_rate": 6.830384149478008e-07,
|
3482 |
+
"loss": 0.0966,
|
3483 |
+
"step": 579
|
3484 |
+
},
|
3485 |
+
{
|
3486 |
+
"epoch": 0.97,
|
3487 |
+
"learning_rate": 6.224182828353242e-07,
|
3488 |
+
"loss": 0.1244,
|
3489 |
+
"step": 580
|
3490 |
+
},
|
3491 |
+
{
|
3492 |
+
"epoch": 0.97,
|
3493 |
+
"learning_rate": 5.64606248238364e-07,
|
3494 |
+
"loss": 0.1137,
|
3495 |
+
"step": 581
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 0.97,
|
3499 |
+
"learning_rate": 5.096039447429534e-07,
|
3500 |
+
"loss": 0.1087,
|
3501 |
+
"step": 582
|
3502 |
+
},
|
3503 |
+
{
|
3504 |
+
"epoch": 0.97,
|
3505 |
+
"learning_rate": 4.57412926541001e-07,
|
3506 |
+
"loss": 0.1022,
|
3507 |
+
"step": 583
|
3508 |
+
},
|
3509 |
+
{
|
3510 |
+
"epoch": 0.97,
|
3511 |
+
"learning_rate": 4.0803466838631455e-07,
|
3512 |
+
"loss": 0.1104,
|
3513 |
+
"step": 584
|
3514 |
+
},
|
3515 |
+
{
|
3516 |
+
"epoch": 0.97,
|
3517 |
+
"learning_rate": 3.614705655529682e-07,
|
3518 |
+
"loss": 0.1169,
|
3519 |
+
"step": 585
|
3520 |
+
},
|
3521 |
+
{
|
3522 |
+
"epoch": 0.98,
|
3523 |
+
"learning_rate": 3.177219337958892e-07,
|
3524 |
+
"loss": 0.1176,
|
3525 |
+
"step": 586
|
3526 |
+
},
|
3527 |
+
{
|
3528 |
+
"epoch": 0.98,
|
3529 |
+
"learning_rate": 2.767900093136544e-07,
|
3530 |
+
"loss": 0.1273,
|
3531 |
+
"step": 587
|
3532 |
+
},
|
3533 |
+
{
|
3534 |
+
"epoch": 0.98,
|
3535 |
+
"learning_rate": 2.3867594871352926e-07,
|
3536 |
+
"loss": 0.1032,
|
3537 |
+
"step": 588
|
3538 |
+
},
|
3539 |
+
{
|
3540 |
+
"epoch": 0.98,
|
3541 |
+
"learning_rate": 2.0338082897886079e-07,
|
3542 |
+
"loss": 0.1342,
|
3543 |
+
"step": 589
|
3544 |
+
},
|
3545 |
+
{
|
3546 |
+
"epoch": 0.98,
|
3547 |
+
"learning_rate": 1.709056474385795e-07,
|
3548 |
+
"loss": 0.1124,
|
3549 |
+
"step": 590
|
3550 |
+
},
|
3551 |
+
{
|
3552 |
+
"epoch": 0.98,
|
3553 |
+
"learning_rate": 1.412513217390554e-07,
|
3554 |
+
"loss": 0.1231,
|
3555 |
+
"step": 591
|
3556 |
+
},
|
3557 |
+
{
|
3558 |
+
"epoch": 0.99,
|
3559 |
+
"learning_rate": 1.1441868981815207e-07,
|
3560 |
+
"loss": 0.1221,
|
3561 |
+
"step": 592
|
3562 |
+
},
|
3563 |
+
{
|
3564 |
+
"epoch": 0.99,
|
3565 |
+
"learning_rate": 9.040850988153438e-08,
|
3566 |
+
"loss": 0.1088,
|
3567 |
+
"step": 593
|
3568 |
+
},
|
3569 |
+
{
|
3570 |
+
"epoch": 0.99,
|
3571 |
+
"learning_rate": 6.922146038129684e-08,
|
3572 |
+
"loss": 0.1155,
|
3573 |
+
"step": 594
|
3574 |
+
},
|
3575 |
+
{
|
3576 |
+
"epoch": 0.99,
|
3577 |
+
"learning_rate": 5.08581399967345e-08,
|
3578 |
+
"loss": 0.1103,
|
3579 |
+
"step": 595
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 0.99,
|
3583 |
+
"learning_rate": 3.53190676174453e-08,
|
3584 |
+
"loss": 0.1189,
|
3585 |
+
"step": 596
|
3586 |
+
},
|
3587 |
+
{
|
3588 |
+
"epoch": 0.99,
|
3589 |
+
"learning_rate": 2.260468232869739e-08,
|
3590 |
+
"loss": 0.1202,
|
3591 |
+
"step": 597
|
3592 |
+
},
|
3593 |
+
{
|
3594 |
+
"epoch": 1.0,
|
3595 |
+
"learning_rate": 1.2715343398972402e-08,
|
3596 |
+
"loss": 0.1187,
|
3597 |
+
"step": 598
|
3598 |
+
},
|
3599 |
+
{
|
3600 |
+
"epoch": 1.0,
|
3601 |
+
"learning_rate": 5.651330269840216e-09,
|
3602 |
+
"loss": 0.0985,
|
3603 |
+
"step": 599
|
3604 |
+
},
|
3605 |
+
{
|
3606 |
+
"epoch": 1.0,
|
3607 |
+
"learning_rate": 1.4128425480763874e-09,
|
3608 |
+
"loss": 0.1111,
|
3609 |
+
"step": 600
|
3610 |
+
},
|
3611 |
+
{
|
3612 |
+
"epoch": 1.0,
|
3613 |
+
"learning_rate": 0.0,
|
3614 |
+
"loss": 0.1056,
|
3615 |
+
"step": 601
|
3616 |
+
}
|
3617 |
+
],
|
3618 |
+
"logging_steps": 1,
|
3619 |
+
"max_steps": 601,
|
3620 |
+
"num_input_tokens_seen": 0,
|
3621 |
+
"num_train_epochs": 1,
|
3622 |
+
"save_steps": 500,
|
3623 |
+
"total_flos": 188987860844544.0,
|
3624 |
+
"train_batch_size": 16,
|
3625 |
+
"trial_name": null,
|
3626 |
+
"trial_params": null
|
3627 |
+
}
|
checkpoint-601/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df3b1605591803a5caaa97ea0ad69cb877d516fa0d9f22146e358860e06bbd46
|
3 |
+
size 6200
|
checkpoint-601/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "rizla/rizla-17",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 2,
|
17 |
+
"num_hidden_layers": 39,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 2,
|
20 |
+
"output_router_logits": true,
|
21 |
+
"pad_token_id": 2,
|
22 |
+
"quantization_config": {
|
23 |
+
"_load_in_4bit": true,
|
24 |
+
"_load_in_8bit": false,
|
25 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
26 |
+
"bnb_4bit_quant_type": "nf4",
|
27 |
+
"bnb_4bit_use_double_quant": true,
|
28 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
29 |
+
"llm_int8_has_fp16_weight": false,
|
30 |
+
"llm_int8_skip_modules": null,
|
31 |
+
"llm_int8_threshold": 6.0,
|
32 |
+
"load_in_4bit": true,
|
33 |
+
"load_in_8bit": false,
|
34 |
+
"quant_method": "bitsandbytes"
|
35 |
+
},
|
36 |
+
"rms_norm_eps": 1e-05,
|
37 |
+
"rope_theta": 10000.0,
|
38 |
+
"router_aux_loss_coef": 0.001,
|
39 |
+
"sliding_window": null,
|
40 |
+
"tie_word_embeddings": false,
|
41 |
+
"torch_dtype": "bfloat16",
|
42 |
+
"transformers_version": "4.38.0.dev0",
|
43 |
+
"unsloth_version": "2024.1",
|
44 |
+
"use_cache": false,
|
45 |
+
"vocab_size": 32000
|
46 |
+
}
|
runs/Feb03_03-36-39_19503a009d2c/events.out.tfevents.1706931401.19503a009d2c.4586.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffb0948ed12228b1d57ad4cb2153b57236267e85037dd386b1729676a77e21a2
|
3 |
+
size 5564
|
runs/Feb03_03-38-23_19503a009d2c/events.out.tfevents.1706931504.19503a009d2c.4673.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6ab7055cf7e2b4bae1ddef36c5591d58538c04237a2c96a71a93bb6bcddda58
|
3 |
+
size 5564
|
runs/Feb03_03-50-56_19503a009d2c/events.out.tfevents.1706932258.19503a009d2c.5617.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d37bae394faf91a963dc4209b0bc4057dc3742250103e6b5472256165a6a34b2
|
3 |
+
size 5870
|
runs/Feb03_03-53-37_19503a009d2c/events.out.tfevents.1706932424.19503a009d2c.5964.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be4701fe827d4250b4fb4121db5276f2ef7d7bb352ef52325c1c530177c6ed93
|
3 |
+
size 5716
|
runs/Feb03_03-55-24_19503a009d2c/events.out.tfevents.1706932529.19503a009d2c.6106.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98df81f9d07d7645ce7490868afb25c9c4bf99b95c3afbea0c58c416c878d3d6
|
3 |
+
size 6640
|
runs/Feb03_03-58-43_19503a009d2c/events.out.tfevents.1706932728.19503a009d2c.6196.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f06d9bb07b99f4d56f653df33c2d1f3c2ff2e082063c3f1fd47bd759e0632f1f
|
3 |
+
size 6794
|
runs/Feb03_04-04-38_19503a009d2c/events.out.tfevents.1706933083.19503a009d2c.6301.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc4b76109d366c802c9c488c5bebe7a563cdc12655f38d020099b9950a77c7a6
|
3 |
+
size 5870
|
runs/Feb03_04-07-08_19503a009d2c/events.out.tfevents.1706933232.19503a009d2c.6407.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9f0f43ca8c8b093875e5c522dd16ea13176b09067a0ba146a426c894ea8f747
|
3 |
+
size 6181
|
runs/Feb03_04-11-41_19503a009d2c/events.out.tfevents.1706933506.19503a009d2c.6498.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20ecda04f64ab54300a9fa5e29b88e2083980a2b8dc82b40483f7c7f95c09aa2
|
3 |
+
size 5719
|
runs/Feb03_04-13-40_19503a009d2c/events.out.tfevents.1706933624.19503a009d2c.6813.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2b156f8d5b7a39588ea49701e40dfddf8444c58fb2bc9c71930c7833bf363fd
|
3 |
+
size 99895
|
special_tokens_map.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"</s>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<s>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"pad_token": {
|
22 |
+
"content": "<s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false
|
27 |
+
},
|
28 |
+
"unk_token": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
}
|
35 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [
|
31 |
+
"<unk>",
|
32 |
+
"<s>",
|
33 |
+
"</s>"
|
34 |
+
],
|
35 |
+
"bos_token": "<s>",
|
36 |
+
"clean_up_tokenization_spaces": false,
|
37 |
+
"eos_token": "</s>",
|
38 |
+
"legacy": true,
|
39 |
+
"max_length": null,
|
40 |
+
"model_max_length": 255,
|
41 |
+
"pad_to_multiple_of": null,
|
42 |
+
"pad_token": "<s>",
|
43 |
+
"pad_token_type_id": 0,
|
44 |
+
"padding_side": "left",
|
45 |
+
"sp_model_kwargs": {},
|
46 |
+
"spaces_between_special_tokens": false,
|
47 |
+
"tokenizer_class": "LlamaTokenizer",
|
48 |
+
"trust_remote_code": true,
|
49 |
+
"unk_token": "<unk>",
|
50 |
+
"use_default_system_prompt": true,
|
51 |
+
"use_fast": true
|
52 |
+
}
|